88. Радий -Radium (Ra)






Некоторые вещества; обладают поразительным свойством: если такое вещество подвергнуть освещению солнечными лучами, светом кварцевой лампы или другого сильного источника света, то после освещения долгое время оно светится. Это явление называют фосфоресценцией. Оно было открыто в 1602 г. болонским сапожником Винченцо Каскаролло.
Светящиеся составы временного действия впервые были получены более 300 лет назад в Италии в Болонье (откуда произошло и название их "болонские фосфоры") путем прокаливания с углем тяжелого шпата (сернокислый барий), содержащего фосфоресцирующие примеси.
Шли десятилетия. В научных журналах изредка появлялись сообщения о новых фосфоресцирующих веществах, новых опытах и наблюдениях. Однако подобные сообщения не обращали на себя внимания, не вызывали научных споров, почти не замечались. В числе исследователей, интересовавшихся явлением фосфоресценции, находился тогда еще мало кому известный парижский профессор Анри Антуан Беккерель. Его имя, однако, вскоре стало известно в научных кругах не только Франции, но и других стран. Этому способствовало следующее событие.
4 января 1896 г. выдающийся немецкий физик Вильгельм Конрад Рентген подробно описал недавно открытые им лучи, обладающие большой проникающей способностью. Эти лучи, названные Рентгеном на заседании Германского физического общества икс-лучами, совершенно свободно проникали через бумагу, дерево, человеческое тело и даже через металлы. Вскоре весть об открытии "таинственных" лучей стала достоянием не только ученых, но и многих любителей естествознания. После же сообщения о том, что предприимчивый врач с помощью рентгеновских лучей определил положение пули в теле пациента и, успешно проведя операцию, спас больного, икс-лучи получили особенную популярность. В модных салонах демонстрировались схемы приборов для получения икс-лучей, а нередко в порядке развлечения показывались на экране "изображения" скелетов тех, кто желал "просветиться". Между прочим, героями таких "скелетных сеансов" очень часто являлись светские дамы.
Возможность получения изображения "скелета" объясняется тем, что лучи, открытые Рентгеном, неодинаково проникают через различные вещества. Кости организмов, а также металлы поглощают эти лучи сильнее, чем кожа, мышцы, мягкие ткани тела или одежда.
Открытие Рентгена послужило толчком и для работ Беккереля. Зная, что икс-лучи, или лучи Рентгена, как называют их обычно теперь, испускаются из светящейся части рентгеновской трубки, Беккерель решил проверить, не являются ли фосфоресцирующие вещества источником лучей Рентгена.
Для проверки этого предположения Беккерель исследует ряд известных, способных к фосфоресценции веществ. Для этого он освещает их солнечными лучами. Пользуясь способностью лучей Рентгена проникать через различные материалы, он помещает исследуемое вещество на фотопластинку, завернутую в черную, не пропускающую обычный свет бумагу. Однажды, когда день оказался пасмурным и осветить очередной образец исследуемого вещества солнечным светом Беккерелю не удалось, он в конце рабочего дня положил подготовленный образец и фотопластинки в черной бумаге в шкаф.
Четыре последующих дня были типичными для парижского января: на небе низко висели тучи, было пасмурно, моросил дождь. На пятый день утром он взял из шкафа образец и фотопластинки для исследования. Каково же было удивление Беккереля, когда при проявлении пластинок вместо мутного расплывчатого и даже сомнительного пятна обнаружился четкий, необыкновенно черный отпечаток лежавшего на пластинках кусочка вещества. Возник вопрос: почему же пластинка почернела, ведь образцы не освещались, никогда не давали таких черных пятен! А если спрятать и вещество и закрытую пластинку в совершенно темную комнату?
Беккерель провел еще один опыт, но результат был прежним. Против кусочка исследуемого вещества, а им было соединение урана, на пластинке красовался четкий отпечаток! Еще опыт, повторение его, новые условия. Все по-прежнему! Опыты повторялись со многими веществами, но только те, которые содержали уран, давали четкое пятно на закрытой фотопластинке, причем интенсивность почернения пластинки была прямо пропорциональна количеству содержащегося в данном веществе чистого урана и времени контакта. Уран, казалось, являлся единственным виновником почернения фотопластинок. Беккерель и сделал подобное заключение. Но вскоре же ему пришлось от него отказаться. Произведя исследование урановой руды, известной под названием смоляной обманки из Богемии, Беккерель обнаружил, что она действует сильнее, чем; следовало ожидать по количеству содержащегося в ней урана. Этого Беккерель не мог понять и тем более объяснить.
Фотопластинка оказалась все же не очень удобным инструментом для определения "урановых лучей". И нужен был удобный и доступный метод количественного определения потока лучей. Эту задачу успешно разрешил физик, профессор Пьер Кюри. Оказалось, что под действием ("урановых" лучей воздух становится проводником электричества. Чем больше этих лучей попадает в пространство между двумя заряженными электричеством металлическими пластинками, тем быстрее они теряют свои заряды.
Прибор был создан, его необходимо было использовать при изучении таинственных "урановых" лучей. За решение этой задачи принимается Мария Склодовская - жена Пьера Кюри. Полагая, что повышенная активность богемской руды объясняется наличием в ней неизвестного Элемента, Мария Склодовская занялась его поисками. Вскоре была одержана первая победа: Мария Склодовская установила, что лучи, подобные урану, испускаются не только соединениями урана, но и тория. Но ... и активность некоторых соединений тория была сильнее, чем следовало бы ожидать, судя по содержанию чистого тория. Это укрепляло ранее высказанную Марией Склодовской мысль о наличии в природе пока еще неизвестного радиоактивного химического элемента. Поиски его стали целью жизни супругов Кюри.
В большом количестве книг, статей, рассказов образно излагается история огромного, поистине героического труда по отысканию этого элемента. Два года шла работа в тяжелых, буквально нечеловеческих условиях труда - в сарае с дырявой крышей и асфальтовым полом. Руками двух самоотверженных людей были переработаны тонны урановой руды, полученной с большим трудом у австрийского правительства, и выделены первые крупинки солей нового элемента - полония. Соединения полония обладали огромной активностью и мощным излучением, но это был еще не чистый полоний. В нем также были примеси. Как выделить их? Как определить свойства, если крупинки соли по размерам не превышают булавочную головку? И снова за работу! Проходят еще пять месяцев, и супруги Пьер и Мария Кюри добиваются новой победы. Они получают около одной десятой грамма соли таинственного элемента. За необычайную способность к лучеиспусканию они назвали его радием (от слова "радиус" - "луч"). Само явление испускания лучей было названо радиоактивностью.
В 1910 г. электролизом хлористого радия был получен радий в чистом виде. По внешнему виду он не отличается от большинства металлов, имеющих серебристо-белый цвет, однако по свойствам радий не имеет себе подобных. Его активность в миллион с лишним раз больше активности урана, соли светятся в темноте, непрерывно излучают тепло. Количество тепла, выделяемого при этом граммом радия, в 250 000 раз больше, чем при сгорании такой же порции угля. Новый элемент обладал необыкновенным физиологическим действием, которое впервые заметил Беккерель. Перевозя крупинку радия в Лондон для демонстрации в Лондонским королевском обществе, Беккерель некоторое время носил ампулу в кармане жилета. Вскоре он ощутил сильное жжение на теле против кармана и при осмотре обнаружил сильную красноту, похожую на пятно от ожога. Изучая действие радия на организм, Пьер Кюри добровольно подверг себя эксперименту. Он привязывал ампулу с солью радия к руке и убедился в способности вещества вызывать долго не заживающие язвы.
Радий разрушает не только здоровые ткани, но убивает и злокачественные новообразования, излечивая поверхностный рак кожи. Такие свойства давали надежду на успешную борьбу с болезнью, против которой человек не имел еще действенных средств.
В 1904 г. французский промышленник Армэ де Лиль высказал смелую для того времени мысль об организации... завода по добыче радия для медицинских целей. Проект де Лиля был претворен в жизнь, чему во многом способствовали супруги Кюри, подготовившие для этого тонкого производства опытных сотрудников. Радий стал поступать в продажу, правда, в минимальных количествах и по баснословно высоким ценам. Несмотря на это, он стал доступным для науки. Число ученых, работающих над изучением свойств радия, увеличивается с каждым годом. Опыты с радием вели десятки ученых. Они установили, что лучи радия являются сложными и способны под действием магнитного и электрического полей разлагаться на составляющие их лучи. Эти составляющие по начальным буквам греческого алфавита были названы альфа-, бета- и гамма-лучами.
Оказалось, что альфа- и бета-лучи являются потоком материальных частиц. Откуда же они исходят? Где тот неисчерпаемый источник, который, не истощаясь, непрерывно рождает иx? Ответ был необычен: атомы радия распадаются! То, что на протяжении столетий считали нерушимым, неделимым, вечным, на глазах распадалось, разрушалось на еще более мельчайшие, чем сам атом, материальные частицы. Разрушались не только атомы радия, но и старые научные представления.
Радий по своей активности превосходит в миллионы раз уран, над который проводились первые опыты. Если уран добывали тоннами и применяли его соединения для окраски стекла, то радий был и остается труднодоступным элементом. Радия в природе мало, не превышает 8-10%. Мария Склодовская получила немногим больше одного грамма радия. К 1916 г. было добыто 48 г, в 1927 г. количество добытого радия составило 340 г. Цена радия значительно превышала цену равного количества золота. Самая высокая цена на радий была в 1912 г. (510 тыс. золотых рублей за 1 г). Точно установлено, что в тонне урана находится 0,34 г радия. Если к этому добавить, что самая богатая урановая руда не столь уж богата ураном, то станет понятным, почему на земном шаре за все эти годы добыто всего около одного килограмма радия.
В периодической системе элементов место радия определилось во второй группе. Присутствие радия в природе, вообще говоря, не было большой неожиданностью, так как существование радия в 1871 г., за 27 лет до его открытия, было предсказано Д. И. Менделеевым. По своим химическим свойствам радий оказался подобным барию. Сходство их столь велико, что сернокислый барий при осаждении из раствора увлекает в осадок и сернокислый радий, если, конечно, он есть в растворе.
До самого последнего времени не были найдены сколь-либо значительные месторождения радия, хотя и установлено, что дно океанов богаче радием, чем суша. Может быть теперь это уже и не столь важно, поскольку разработаны способы искусственного получения радиоактивных элементов, вполне заменяющих радий во всех областях науки и техники. В связи с этим радий сейчас потерял первостепенное значение.
Открытие радия и явление радиоактивности знаменовали в истории развития науки новый этап в изучении вещества и начало новой эры в развитии техники.
Как памятник великому подвигу Марии Кюри на Брюссельской выставке в павильоне "Атом" демонстрировалась ее записная книжка. Через много лет страницы сохранили значительную радиоактивность. Может быть это так рано и прервало жизнь великого ученого?



89. Актиний-Actinium (Ac)


Есть элементы, которым, пo-видимому, не суждено, по крайней мере в ближайшем будущем, получить широкое применение хотя бы потому, что в зем-ной коре они находятся в ничтожных количествах. К числу таких элементов можно отнести актиний, процентное содержание которого в земной коре выражается дробью, в которой значащая цифра стоит на пятнадцатом месте после запятой.
Несколько убедительнее и, пожалуй, нагляднее будет другая цифра. Актинии встречается как примесь к урану. В тонне содержится всего лишь шесть стотысячных долей грамма актиния. Это наиболее богатый источник актиния. Таким образом, чтобы добыть 1 г актиния, необходимо переработать 16 000 т урана, т. е. 1000 вагонов. О соединении актиния с серой пишут, что оно черного цвета и что у актиния, по-видимому должны быть сильно выражены основные свойства. Однако последнее заключение сделано не на основе экспериментального факта, а исходя из положения актиния в периодиче-ской системе элементов Д. И. Менделеева.
Актиний обладает радиоактивностью и является "родоначальником" семействе, актиноидов.
Получать металлический радий из его солей Марии Кюри-Склодовской помогал французский ученый А. Дебьерн. Руководствуясь методами Склодовской, он выделил из урановой руды новый элемент- актиний. Это было в 1899 г.
Актиний получают в небольших количествах в атомных реакторах при облучения радия нейтронами. Это позволяет изучить некоторые химические свойства актиния.
Актиний - серебристо-белый металл, напоминающий лантан. При обычных условиях он испускает слабое голубоватое свечение, заметное в темноте. Во влажном воздухе актиний легко окисляется с образованием белой окисной пленки, предотвращающей дальнейшее окисление. Температура плавления актиния 1000-1100°С, температура кипения - около 3300°С. В настоящее время известно 10 изотопов актиния, наиболее изученными являются изотопы актиний-227 (период полураспада 21,6 года) и актиний-228 (период полураспада 6,13 часа).



90. Торий-Thorium (Th)


Элемент "окрестил" Берцелиус по названию минерала торита, из которого была выделена "ториевая земля". Минерал торит, в свою очередь, получил название от имени древнегерманского бога грома и войны Тора. Конечно, Берцелиус не предполагал каких-то таинственных свойств у этого элемента, не связывал его особенностей с громом и военными событиями.
Открытый в 1828 г. в "ториевой земле", торйй через несколько лет был выделен в свободном виде. Однако этот элемент добывался столь сложными путями, что еще в конце XIX в. килограмм соли этого элемента стоил более тысячи рублей.
Проходило одно десятилетие за другим, но торий продолжал оставаться известным только химикам, да и то не всем. Поворот в истории элемента тория связан с открытием ценного свойства двуокиси тория. При нагревании это вещество испускает яркий и приятный для глаз белый свет. Во второй половине прошлого века получили распространение так называемые газокалильные лампы - источники освещения для помещений и улиц. Важнейшей частью этих ламп являлись газокалильные сетки - сетчатые колпачки из 99 % двуокиси церия. Эти лампы на несколько десятилетий отсрочили начавшее уже гибнуть из-за непосильной конкуренции с электрическим освещением производство светильного газа. В пламени светильного газа колпак из смеси двуокисей тория и церия испускает яркий свет, так как теплота сгорания газа превращается большей частью в световую энергию. Это было очень выгодно. Изобретатель газокалильных сеток нажил изрядное состояние. Однако, как ни ярко светились ториевые колпачки, на смену им пришел "русский свет" - электрические лампочки русского изобретателя Лодыгина, и ториевые колпачки газокалильных фонарей потеряли свое значение. Вместе с этим резко сократилось применение и производство ториевых соединений. Торий почти не применяли. Он использовался главным образом как добавка в сердечники углей для дуговых ламп прожекторов.
"Переоценка ценности" тория, однако, началась значительно раньше, почти тогда же, когда Мария Склодовская и независимо от нее Шмитд установили, что торий является радиоактивным элементом, хотя и с менее выраженной активностью, чем у радия. Оказалось, что атомы тория претерпевают ряд последовательных разрушений, превращаясь в конечном итоге в устойчивый свинец с атомным весом 208. Неустойчивость ядра атома тория нашла практическое применение как источник внутриатомной энергии.
Преимущество тория как ядерного "горючего" перед ураном состоит в том, что лишь при 1400-1500°С кристаллическая решетка тория начинает претерпевать фазовые превращения. Это позволяет реактору на ториевом горючем работать при более высоких температурах.
Тория в природе значительно больше урана. Соединения тория содержатся в монацитовом песке. Тория в земной коре не так уж мало (6·10-5 %). В ничтожных количествах он встречается даже в гранитах.
Торий по внешнему виду и температуре плавления напоминает платину, по удельному весу и твердости - свинец. В химическом отношении у тория много сходства с церием, а по структуре электронной оболочки атома - это равноправный член семейства актиноидов.
Перспективы применения тория весьма широки: атомные двигатели и, как знать, может даже атомные станции для подогрева воды в северных реках получат для своей работы торий в качестве энергетического сырья.



91. Протактиний-Protactinium (Pa)


Существование протактиния было предсказано в 1871 г. Д. И. Менделеевым.
Этот элемент, максимальное количество которого в руках исследователей не превышало нескольких сотых долей грамма, является близким "родственником" актиния не только по положению в периодической системе, но и по совместному местонахождению в природе и своим свойствам. О том, как трудно было получить его в чистом виде, можно судить по тому, что в источнике этого элемента - уране - протактиний присутствует вместе с радием, причем приблизительно в одинаковых количествах. В тонне металлического урана содержимся примерно по 0,3 грамма радия и протактиния. Но тонну металлического урана получить не так просто.
Радиоактивный протактиний является спутником урана и встречается как примесь к урановым рудам, а по происхождению - в одно и то же время "сыном" урана и "отцом" актиния. Излучая альфа-лучи, радиоактивный изотоп протактиния, встречающийся в природе, превращается в актиний. В этом случае он - "отец", а образуюсь из урана, - "сын" последнего. Название элемента ближе всего соответствует буквальному переводу "первый луч" ("протос" по-гречески "первый", "актинос" - "луч"), в более свободном переводе - "первый родоначальник актиния.
Излучаемые протактинием альфа-частицы обладают малой энергией и, в связи с этим,- короткой длиной пробега, что позволяет определить содержание протактиния в сырье, не прибегая к химическим методам. Один из приемов выделения протактиния основан на способности соединения элемента адсорбироваться из растворов на стекле химической посуды.
Немецкие исследователи Отто Ган и Лиза Мейтнер открыли протактиний в 1917 г. Лишь через десять лет ученый Гроссе выделил несколько сотых грамма серебристо-белого металла - протактиния. Этот героизм нельзя не оценить, зная, что содержание протактиния в земной коре выражается дробью (в процентах от общего числа атомов), в которой значащая цифра начинается после одиннадцати нулей: 0,000000000008%. Из пяти с половиной тонн богатой богемской урановой смоляной руды можно получить полграмма относительно чистого протактиния.



92. Уран-Uranium (U)


В греческой мифологии Ураном назывался бог неба, сын и одновременно супруг богини Земли - Геи, отец титанов и циклопов - одноглазых гигантов. Имя Урана было присвоено седьмой планете солнечной системы, которую сначала принимали за комету. В 1789 г. М. Клапрот при исследовании смоляной руды обнаружил новое вещество, которое в честь открытия планеты Уран также было названо ураном. В 1842 г. французский химик М. Пелиго доказал, что при обжиге с углем окислов урана из них получается не свободный уран, а... опять один из окислов. По внешнему виду этот окисел напоминал медь и был принят М. Клапротом за металл. Правда, осторожный Клапрот дипломатично назвал обнаруженное вещество "полуметаллом". Эта осторожность не лишила Клапрота авторства. Выделенный Пелиго в 1842 г. металл был уже действительно ураном.
Пожалуй, ни один элемент никогда не привлекал столько внимания людей, как уран. И этот интерес вполне понятен, если вспомнить, что уран- неисчерпаемый источник энергии, владеть и управлять которой учится человек.
Почти до самого конца XIX в. урановые соединения представляла "урановая желть" (окись урана), сообщающая при добавке обычному стеклу желтый или оранжевый цвет в проходящем свете и зеленоватый в отраженном. Это же соединение урана использовали для разрисовки ценнейшего севрского фарфора (так называемая подглазурная живопись). Некоторые соединения урана давали возможность получать окраски от желтого до бархатно-черного цветов, неповторимой прочности и стойкости. Урановая руда ценилась в это время только за возможность получения из нее красителей для фарфорово-фаянсового производства.
На грани XX столетия ученые открыли в отбросах Урановой руды радий. Удаче Марии Склодовской и Пьера Кюри в открытии радия, безусловно, способствовало то, что отбросы урановой руды были в то время весьма дешевым материалом. Супруги Кюри, хотя и с большими хлопотами, получили их для своих работ почти бесплатно. С открытием радия урановая руда стала источником этого "чудесного" элемента. Однако сам уран после отделения радия почти не использовали. Для его сбыта пытались получить урановую быстрорежущую сталь, но трудности выделения чистого урана не способствовали ее распространению. Не находя значительного применения, используясь, главным образом, в фотографии, урановые соединения в 30-х годах XX в. ценились гораздо дешевле радия.
Внезапно интерес к урану, как и цены на него, возросли, а радий, занимавший среди других элементов столь исключительное место, совершенно потерял первостепенное значение. "Виновниками" такого невероятного обмена ролями радия и урана оказались советские ученые Г. Н. Флеров и К. А. Петржак. В 1940 г. они установили, что атомы урана склонны к спонтанному, самопроизвольному взрыву своего ядра и что этот взрыв идет с выделением колоссального количества тепловой энергии. Правда, такой взрыв происходит в веществе очень редко: в сотни тысяч или миллионы раз реже, чем обычный альфа-распад. Однако, если бы такие "взрывы" последовательно протекали бы друг за другом, то один грамм ядер урана выделил бы такое же количество энергии, как и 18 т обычного взрывчатого вещества.
Уран, как и другие элементы имеет несколько изотопов, которые в различной степени способны к делению под действием нейтронов. Оказывается, что наиболее способным к нейтронному делению ядер является изотоп урана с массовым числом 235. При распаде ядра атома изотопа урана-235 возникают осколки (атомы элементов с массовым числом меньшим, чем уран) и 2-3 нейтрона, которые, попадая в ядра соседних, еще не распавшихся атомов урана, вызывают такое же деление. Благодаря многократному повторению этих быстро протекающих процессов распад атомов лавинообразно нарастает (цепная реакция), и выделяется то огромное количество энергии, которую и принято именовать атомной, а явление - атомным взрывом. На применении цепной реакции урана или плутония и основан принцип действия атомной бомбы. Одна из первых бомб была изготовлена из урана-235. В природной смеси изотопов ура-на-235 всего 0,715 %, т. е. на каждый килограмм природного урана приходится 7,15 г урана-235.
Поэтому для осуществления ядерной реакции необходимо было найти способы получения или разделения изотопов, или обогащения смеси их ураном-235.
Такое разделение изотопов можно было осуществить, используя шестифтористый уран с температурой кипения 55,7ёС способов газовой диффузии. Этот способ основан на более быстрой способности шестифтористого урана-235 проникать через пористый фильтр в сравнении с тем же соединением, но содержащим уран-238 (обычный, не "горючий").
Разделение изотопов урана методом термодиффузии связано с устройством Многих тысяч перегородок, насосов, холодильнике . Поэтому только пусковой период этого "деликатнейшего" технологического процесса составляет 80 -100 дней.
Уран - мягкий, серебристо-белый металл, в два с половиной раза тяжелее железа, более чем в полтора раза тяжелее свинца. Этот химически активный элемент образует много соединений, легко реагирует со многими неметаллами, даст сплавы и соединения с ртутью, оловом, медью, свинцом, алюминием, висмутом, железом и другими металлами.
Можно сказать, что в настоящее время уран является одним из наиболее полно изученных элементов периодической системы.
Для металлического урана известно несколько кристаллических модификаций, переход которых сопровождается резкими объемными изменениями. Первый такой переход происходит при 660°С. Поэтому в атомных реакторах на урановом "горючем" нельзя допускать более высокую температуру.
Уже при 100°С вода немедленно разлагает уран с образованием окислов и гидридов, а при 700°С компактный уран загорается. Поэтому урановые стержни покрывают алюминием. Из-за большой химической активности (сродство к азоту, кислороду, углероду) получение металлического урана сопряжено с большими трудностями, тем более что уран нельзя получить электролизом или очистить возгонкой.
Читая книги, в которых отражена история изучения урана, нетрудно заметить, как быстро "понижалась" его температура плавления. В 1925 г. указывалось, что температура плавления урана выше 1850°С, в 1932 г. она уже "точно" определялась в 1850°С, в 1935 г.- в 1400°C, а в 1956 г. большинство авторов единодушно утверждает, что она равна 1133°С. Такое "снижение" температуры плавления урана объясняется исключительно совершенствованием техники очистки и получения "чистого" урана. Чем чище стали получать уран, тем все ниже оказывалась его температура плавления.
Внимание этому элементу в свое время уделял Д. И. Менделеев, доказавший, что атомный вес урана равен 240, а не 120, как утверждали предшественники и современники Д. И. Менделеева.
Общее содержание урана в земной коре составляет, по данным разных авторов, от двух до четырех десятитысячных долей процента, что в переводе на язык весовых единиц равняется миллиардам тонн! Достаточно указать, что урана больше, чем ртути, кадмия, серебра...
И если за 40 лет с начала XX в. было добыто всего 7500 т урана, то со времен второй мировой войны его добыча резко возросла. Правда, уран не встречается в виде мощных месторождений, но зато известно большое число минералов, содержащих уран: карнотит, отенит, уранинит, торбернит, тюямунит (Африка, Австралия, бывший СССР). Богатейшие залежи урановой менее 2000 долларов дохода в год.





На главную Сделать стартовой Добавить в избранное Написать письмо

Поставь закладку/отправь другу!

Рейтинг SunHome.ru Яндекс.Метрика