76. Осмий-Osmium (Os)






Попробуйте подсчитать, какой путь совершает кончик пера автоматической ручки при движении по бумаге только в пределах одной тетради в 12 листов. Пусть это будет зависеть от величины букв, манеры письма, в общем от почерка; в среднем он составляет 150-250 м. Четверть километра - путь немалый! Теперь представьте, сколько трения на этом пути выдерживает кончик пера: ведь идет непрерывная шлифовка пера о бумагу. Правда, бумага не наждак, не кварцевый песок и даже не тертый кирпич, но путь большой и нагрузка изрядная. Значит, от кончика пера требуется тоже исключительная твердость. Необходимой твердостью обладает не всякий металл и не всякий сплав. Особенно пригоден для этой цели сплав осмия с иридием.
Замечательной особенностью осмия является его вес. Осмий - самый тяжелый металл на Земле. Плотность осмия составляет 22,6, т. е. он в два раза тяжелее свинца и почти в три раза тяжелее железа.
Чистый осмий - синевато-серый, тугоплавкий (2700°С), твердый, но хрупкий металл. Хрупкость осмия так велика, что его можно истолочь в порошок в железной ступке, причем порошок имеет сине-черный цвет, а не серовато-светлый, как у большинства металлов. Необычные свойства порошка осмия состоят также в том, что на воздухе он, хотя и медленно, ко уже при обычной температуре соединяется с кислородом, причем один атом осмия пpисоединяет четыре атома кислорода, т. е. осмий проявляет самую высокую валентность, равную восьми, образуя четырехокись осмия.
Окисел восьмивалентного осмия плавится при 48°C, а при 130°С - кипит с образованием пара, сильно раздражающего слизистые оболочки. Пары четырехокиси осмия особенно опасные для глаз, могут вызвать слепоту. Они имеют специфический запах. Некоторые исследователи сравнивают его с запахом гнилой редьки.
За своеобразный запах четырехокиси элемент и получил свое название "осмий" от греческого слова "осмэ", что значит "запах", "пахнущий". Интересна замечательная особенность четырехокиси осмия - большая растворимость в органических жидкостях по сравнению с водой. В стакане воды растворяется всего только 14 г четырехокиси осмия при комнатной температуре; в стакане четыреххлористого углерода при тех же условиях - более 700 г.
Хотя осмий был открыт в 1803 г., он до настоящего времени не получил достаточно широкого применения. Одно время его использовали для изготовления нитей в электролампах, в медицинской практике, при подготовке микроскопических препаратов, для микроскопических исследований в тканях жировых включений.
Жировые включения, реагируя с водным раствором четырех окиси осмия, приобретают хорошо видимую черную окраску.

О́смий — химический элемент с атомным номером 76. В периодической системе химических элементов Д. И. Менделеева, обозначается символом Os (лат. Osmium). При стандартных условиях представляет собой серебристо-голубоватый хрупкий переходный металл. Относится к группе платиновых металлов. Обладает высокой плотностью, сравним по этому параметру только с иридием (плотности Os и Ir практически равны с учётом расчётной погрешности).

История

Осмий открыт в 1804 году английским химиком Смитсоном Теннантом в осадке, остающемся после растворения платины в царской водке. Сходные исследования проводились французскими химиками Колле-Дескоти, Антуаном Франсуа де Фуркруа и Вокеленом, которые тоже пришли к выводу о содержании неизвестного элемента в нерастворимом остатке платиновой руды. Гипотетическому элементу было присвоено имя птен (крылатый), однако опыты Теннанта продемонстрировали, что это смесь двух элементов — иридия и осмия.
Назван от др.-греч. ὀσμή (запах), по резко пахнущему летучему оксиду OsO4 (напоминает озон).

Получение

Осмий выделяют из обогащённого сырья платиновых металлов путём прокаливания этого концентрата на воздухе при температурах 800—900 °C. При этом количественно сублимируют пары весьма летучего тетраоксида осмия OsO4, которые далее поглощают раствором NaOH.
Упариванием раствора выделяют соль — перосмат натрия, который далее восстанавливают водородом при 120 °C до осмия:
Na2[OsO22(OH)4] + 3H2 = 2NaOH + Os + 4H2O.

Осмий при этом получается в виде губки.

Свойства

Физические
Осмий — серо-голубоватый, твёрдый, но хрупкий металл с очень высокой удельной массой, сохраняющий свой блеск даже при высоких температурах. В силу своей твёрдости, хрупкости, низкого давления паров (самого низкого среди всех платиновых металлов), а также очень высокой температуры плавления, металлический осмий с трудом поддаётся механической обработке. Осмий считается самым плотным из всех химических элементов, немного превосходя по этому параметру иридий. Наиболее достоверные значения плотностей для этих металлов могут быть рассчитаны по параметрам их кристаллических решёток: 22,562 ± 0,009 г/см³ для иридия и 22,587 ± 0,009 г/см³ для осмия. При сравнении различных изотопов этих металлов, наиплотнейшим оказывается 192Os. Необычайно высокая плотность осмия объясняется лантаноидным сжатием.

Химические
Порошок осмия при нагревании реагирует с кислородом, галогенами, парами серы, селеном, теллуром, фосфором, азотной и серной кислотами. Компактный осмий не взаимодействует ни с кислотами, ни со щелочами, но с расплавами щелочей образует водорастворимые осматы. Медленно реагирует с азотной кислотой и царской водкой, реагирует с расплавленными щелочами в присутствии окислителей (нитрата или хлората калия), с расплавленной перекисью натрия. В соединениях проявляет степени окисления от −2 до +8, из которых самыми распространенными являются +2, +3, +4 и +8.
Осмий — один из немногих металлов, образующих полиядерные (или кластерные) соединения. Полиядерный карбонил осмия Os3(CO)12 используется для моделирования и исследования химических реакций углеводородов на металлических центрах. Карбонильные группы в Os3(CO)12 могут замещаться на другие лиганды, в том числе и содержащие кластерные ядра других переходных металлов.


Источник: Википедия




77. Иридий-Indium (Ir)


Иридий почти такой же тяжеловес, как и осмий. Плотность иридия - 22,5, а температура плавления - 2450°С. Ряд химических свойств сближает иридий с рутением, палладием, осмием и особенно родием. Есть, однако, и некоторые особенности, одна из них сыграла роль в выборе названия элемента при его открытии: соединения иридия имеют яркие и пестрые окраски. За эти окрашенные соединения и получил свое название открытый в 1803 г. английским химиком Теннантом новый элемент иридий ("ирис" означает "радуга", "радужный").
В научно-исследовательских и производственных лабораториях очень важное значение приобрели измерения высоких температур. Существуют различные приборы и методы измерения температуры. Об об ном из таких приборов, который связан с применением иридия, нам и хочется рассказать.
Если две проволочки из разных металлов спаять на водородном пламени и нагреть место спая, то в цепи появится электрический ток. Подобная система из разнородных проводников называется термопарой (от греческого "терме" - теплота и "пара" - вместе, рядом). При данной паре металлов, из которых сделаны проволоки, электродвижущая сила будет тем больше, чем выше температура спая. Подобрав вещества с известной температурой плавления, можно составить систему зависимости между измеряемой температурой и возникающей электродвижущей силой. В сочетании с гальванометром, включенным в цепь, термопара называется термоэлектрическим пирометром (греческое "пир" - огонь, "метрео" - мерю). Понятно, что термопарой из меди и железа нельзя измерять температуры выше точки плавления наиболее легкоплавкого металла, которым в данном случае является медь. А какую же термопару взять, если температура измеряемого объекта больше температуры плавления меди? Чаще всего применяют платину (точнее сплав платины с родием), сплавы иридия с рутением, а также с родием. Возникает вопрос: а почему не взять просто платину и, например, родий. Почему берут вторую проволочку не из чистого металла, а из сплавов? В рассказе о платине мы сообщим о некоторых ее свойствах, а сейчас, забегая вперед, отметим, что платина - металл сравнительно мягкий и пластичный. У иридия характеристика противоположная - он чрезвычайно твердый, но хрупкий. Сплав иридия с платиной обладает средними свойствами: достаточно твердый и нехрупкий; тонкая проволочка из сплава не ломается. Примесь иридия к платине очень сильно увеличивает химическую стойкость ее и, что особенно важно, уменьшая тепловое расширение, сообщает сплаву довольно высокую температуру плавления. Это позволяет применять подобного рода термопары для измерения таких температур, при которых другие приборы менее надежны. С помощью иридия можно точно измерять не только высокие температуры, но и различные расстояния - от самых малых, микроскопических, до самых больших, астрономических.
С помощью иридия устанавливается тождество между принятыми международными мерами длины. В самом деле, линейка, изготовленная во Владивостоке, должна иметь деления такой же длины, как и ее двойник в Риге, Одессе или в любом другом пункте, иначе будет много неприятностей: скажем, изготовят деталь для машины, пользуясь одной линейкой, отправят в другой город и окажется, что у детали не такие размеры, как показывает вторая линейка, с помощью которой были даны размеры для изготовления детали. Согласитесь: были бы крупные неприятности! Значит, деления на линейках должны иметь строго одинаковую величину, должны быть изготовлены по одному образцу. Такой единый образец должен существовать не для одного города или государства, а для всех государств и городов нашей планеты. Такой образец есть! Это так называемый эталон метра, хранящийся в Париже. Длина эталона приблизительно равна одной сорокамиллионной части длины парижского меридиана - линейная единица, введенная во Франции 31 июля 1793 г. Первичный эталон был изготовлен в 1799 г. с пророческой надписью: "Для всех времен, для всех народов". Метр действительно стал самой распространенной на земном шаре мерой длины. Каждое государство по эталону метра готовит свои эталоны и время от времени сверяет их с парижским эталоном.
С 1 января 1963 г. в СССР введена, как предпочтительная, Международная система единиц (СИ), принятая во всем мире по решениям Десятой и Одиннадцатой Генеральных конференций по мерам и весам. В этой системе за единицу длины принят метр, величина которого равна 1650763,73 длин волн, излучаемых атомом криптона-86 в вакууме.
Иридий ценен только в чистом виде или в сплавах с другими металлами. Соли его, как ни красивы их растворы в воде и других жидкостях, практического значения почти не имеют.
Острия опор для стрелок контрольных компасов, некоторые ответственные инструменты также иногда делают из сплава иридия с платиной. Сплавы иридия с осмием, отличающиеся большой твердостью и нестираемостыо при трении, употребляются для выделки осей точнейших часовых механизмов и приборов.
Следует отметить, что минералы, содержащие наибольшие количества иридия, были открыты на Урале и по местам их первого местонахождения носят соответствующие названия: сысерскит - от Сысертского завода, невьянскит - от Невьянска.

Ири́дий — химический элемент с атомным номером 77 в периодической системе химических элементов Д. И. Менделеева, обозначается символом Ir (лат. Iridium). Иридий — очень твёрдый, тугоплавкий, серебристо-белый переходный металл платиновой группы, обладающий высокой плотностью и сравнимый по этому параметру только с осмием (плотности Os и Ir практически равны с учетом расчетной погрешности). Имеет высокую коррозионную стойкость даже при температуре 2000 °C.

История

Иридий был открыт в 1803 году английским химиком С. Теннантом одновременно с осмием, которые в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Название (др.-греч. ἶρις — радуга) получил благодаря разнообразной окраске своих солей.

Получение

Основной источник получения иридия — анодные шламы медно-никелевого производства. Из концентрата металлов платиновой группы отделяют Au, Pd, Pt и др. Остаток, содержащий Ru, Os и иридий, сплавляют с KNO3 и КОН, сплав выщелачивают водой, раствор окисляют Cl2, отгоняют OsO4 и RuO4, а осадок, содержащий иридий, сплавляют с Na2O2 и NaOH, сплав обрабатывают царской водкой и раствором NH4Cl, осаждая иридий в виде комплексного соединения (NH4)2[IrCl6], который затем прокаливают, получая металл — иридий. Перспективен метод извлечения иридия из растворов экстракцией гексахлороиридатов высшими алифатическими аминами. Для отделения иридия от неблагородных металлов перспективно использование ионного обмена. Для извлечения иридия из минералов группы осмистого иридия минералы сплавляют с оксидом бария, обрабатывают соляной кислотой и царской водкой, отгоняют OsO4 и осаждают иридий в виде (NH4)2[IrCl6].

Физические свойства

Тяжёлый серебристо-белый металл, из-за своей твердости плохо поддающийся механической обработке. Кристаллическая структура — кубическая гранецентрированная с периодом а0=0,38387 нм; электрическое сопротивление — 5,3×10−8Ом·м (при 0 °C); коэффициент линейного расширения — 6,5×10−6 град; модуль нормальной упругости — 52,029×106 кг/мм²; плотность — 22,65 г/см³.

Химические свойства

Иридий устойчив на воздухе при обычной температуре и нагревании, при прокаливании порошка в токе кислорода при 600—1000 °C образует в незначительном количестве IrO2. Выше 1200 °C частично испаряется в виде IrO3. Компактный иридий при температурах до 100 °C не реагирует со всеми известными кислотами и их смесями. Свежеосажденная иридиевая чернь частично растворяется в царской водке с образованием смеси соединений Ir(III) и Ir(IV). Порошок иридия может быть растворён хлорированием в присутствии хлоридов щелочных металлов при 600—900 °C или спеканием с Na2O2 или BaO2 с последующим растворением в кислотах. Иридий взаимодействует с F2 при 400—450 °C, а c Cl2 и S при температуре красного каления.


Источник: Википедия

Назад




Полезная Информация
 |  Караоке  |  Сонник  |  Вебкамера на МКС  |  Гадания  |  Мировая статистика  |  Сейсмический монитор  |  Население Земли  |  Онлайн полеты самолётов  |  Телевидение  |  Поздравления  |  Нетрадиционная медицина  |  Журналы,газеты  |  Иллюзии  |  Выживание
 |  Омоложение  |  Блог Артема Драгунова  |  Анимация, картинки  |  Улыбнись
 |  Лунный календарь  |  Заговоры  |  Астрология, гороскопы  |  100 лучших фильмов  |  Игры  |  Очищение  |  Фильмы онлайн  | 


На главную Сделать стартовой Добавить в избранное Написать письмо
Copyright © priroda.inc.ru