63. Европий - Europium (Eu)






Открыт химиком Дэмерсэ в 1901 г., температура плавления 1150°С, трудно отделяется от лантаноидов.
Большинство химиков никогда не видели соединений европия. Его в земной коре в 70 раз больше, чем серебра, и в 1000 раз больше золота. Добавим для характеристики европия следующее: обычная валентность - три, но в некоторых соединениях бывает и двухвалентным. Соли окрашены в розоватый цвет. Выделить эти соли в чистом виде из смеси с солями других редкоземельных удалось лишь после длительной и хлопотливой работы в 1940 г.
Только этим можно объяснить, что в 1952 г. 1 кг окиси европия чистотой 98-99 % стоил в США 300 тысяч долларов, причем окись европия продавалась партиями по ... 5 г.
Европий - самый легкий из лантаноидов. Его плотность составляет 5,166 г/см3, т. е. почти в полтора раза меньше железа. В последние годы радиоактивный изотоп - европий-155 (период полураспада 1 год 250 суток) благодаря наличию гамма-излучений используется в целях медицинской диагностики и дефектоскопии. Легкие и портативные рентгенопросвечивающие аппараты, созданные на основе радиоактивного изотопа европия, оказались очень удобными для проверки качества тонкостенных металлических деталей. Просвечивание гамма-лучами европия стальных изделий при толщине стенок до 15-20 мм, а также изделий из титановых сплавов до 30-40 мм и алюминиевых - до 50-60 мм показывает, что европиевая гамма-дефектоскопия обладает в 2-4 раза более высокой чувствительностью в сравнении с широко используемыми радиоизотопами цезия и кобальта.
Европий -один из пяти элементов, которые отличаются от всех остальных своих "родственников" большой распыленностью. Даже в монацитовом песке его содержится не более 0,002 %.
Исключая лантан, церий, неодим и лютеций, европий, несмотря на распыленность и редкость нахождения в природе, изучен лучше всех остальных лантаноидов. Этому способствовал главный химик Чикагской фирмы "Линдсей Лайт энд Кемикл К" Мак-Кой. Сумев в результате упорного труда получить несколько сот граммов солей европия, он, не скупясь, предоставлял их для исследования или давал взаймы другим ученым, что освобождало исследователей от весьма трудоемких методов выделения и очистки европия и давало возможность непосредственно изучать его свойства.



64. Гадолиний-Gadolinium (Gd)


Гадолинит - это минерал, содержащий целый ряд элементов. Главные из них нам уже знакомы. Это - бериллий, железо, кремний, кислород и небольшое количество редкоземельных элементов (церий, иттрий и др.). Черный или зеленовато-черный гадолинит, внешне похожий на асфальт или уголь, вначале назывался иттербитом, но месту своего нахождения в заброшенном карьере вблизи шведского городка Иттерби. Гадолинит - минерал сравнительно редкий, крупнейшие месторождения его находятся в Норвегии и Швеции. Название получил от имени финского профессора химии Ю. Гадолина, впервые исследовавшего этот минерал.
Впервые гадолинит (иттербит) был обнаружен в 1787 г. лейтенантом шведской армии Карлом Аррениусом, коллекционером минералов, любителем химии и минералогии.
Гадолинит оказался минералом, положившим начало длинному ряду исследований, неоднократно приносивших радость успехов и горечь неудач, замечательных достижений и роковых ошибок, истинных открытий и невольных заблуждений. И, безусловно, справедливо писал известный финский минеролог Флинт по адресу гадолинита, что этот минерал сыграл в истории неорганической химии значительно большую роль, чем какой-либо другой.
В 1880 г. в этом минерале швейцарским химиком Ж. Ш. Мариньяком был обнаружен элемент из семейства лантаноидов. В 1886 г. новому элементу в память финского химика, члена-корреспондента Петербургской академии наук Ю. Гадолина, было присвоено название гадолиний. В природе гадолиния почти столько же, сколько и свинца, но в отличие от свинца гадолиний весьма рассеян в земной коре.
Несколько лет назад о гадолинии можно было сказать только "не находит применения", и это соответствовало бы истине. Но после первых исследований его свойств обнаружились такие возможности применения, которые открывают необъятные просторы для использования его в технике. Прежде всего перспективное применение гадолиния в виде сплавов для изготовления регулирующих стержней в ядерных реакторах. Величина поперечного захвата у гадолиния очень велика - в 18 раз превышает таковую для кадмия (2500 барн), широко применяемого для регулирования работы атомных реакторов.
Соединение гадолиния (сернокислый или хлористый гадолиний), являясь сильно парамагнитными веществами, применяются в научных исследованиях для получения сверхнизких температур. Это достигается довольно оригинальным способом. Соль гадолиния, находящаяся в хорошо изолированном пространстве, заполненном инертным газом, помещается в магнитное поле, в результате соль нагревается, а от нее нагревается газ. Затем газ откачивается, магнитное поле удаляется и соль, таким образом, охлаждается до температуры ниже начальной. Многократное повторение этого цикла ведет к снижению температуры, которая может достигнуть величин, весьма близких к абсолютному нулю.





На главную Сделать стартовой Добавить в избранное Написать письмо

Поставь закладку/отправь другу!

Рейтинг SunHome.ru Яндекс.Метрика