29. Медь-Cuprum (Сu)






Первое знакомство человека с медью произошло, очевидно, в доисторические времена. В природе медь иногда встречается в самородном состоянии в виде отдельных кристаллов, кусочков и крупных кусков. Самый крупный из когда-либо найденных самородков меди весил 420 т. Интересно отметить, что у некоторых крупных самородков меди, найденных еще в древности, иногда выступающие части обрублены... каменными топорами. Нетрудно представить, сколько усилий потратили первобытные люди для этой операции. Как известно, вначале человек освоил камень. Из камня он научился делать свои первые орудия и в том числе каменный топор. С помощью каменного топора впоследствии, возможно, был изготовлен... медный топор. Таким образом, медь стала одним из первых металлов, который человек начал применять в своей сознательной деятельности. Медь хорошо была известна в доисторические времена людям, населявшим районы Северной Америки. Там, на побережье Гудзонова залива и берегах Верхнего Озера, находили большие самородки меди и обрабатывали ее холодным способом. Этот способ обработки самородной меди сохранился у индейцев до времен Колумба.
Но самородки меди встречаются редко, и уже за несколько тысяч лет до нашей эры человек нашел способ получения меди из медных руд. У египтян, например, медь была известна очень давно и уже при первых фараонах(4000- 5000 лет до н. э.) добыча меди производилась в рудниках Синайского полуострова. С глубокой древности известны медные руды на острове Кипр в Средиземном море. Ученые полагают, что научное название меди "купрум" происходит от наименования острова Кипр, где были медные рудники древних римлян.
Русское слово "медь", по мнению некоторых исследователей, произошло от слова "смида", которое у некоторых древних племен, населявших европейскую часть бывшей территории СССР, обозначал вообще металл.
Опыт применения этого металла показывал людям древности малую твердость меди, что заставляло задумываться над способами улучшения ее качества. Случайное образование сплава меди с оловом при обработке некоторых руд, содержащих медь и олово вместе, не прошло мимо внимания первобытных "металлургов". Преимущества полученного таким образом сплава послужили толчком к искусственному его воспроизводству.
Это открытие, по-видимому, было сделано в Месопотамии (Ирак), откуда впоследствии распространилось по странам Ближнего и Дальнего Востока. Название сплава меди с оловом - бронза - имеет значительно более позднее происхождение и связано с названием небольшого итальянского торгового городка Бриндизи на берегу Адриатического моря. Среди предметов торговли были и изделия из бронзы от латинского "Эс брундуси", т. е. медь из Бриндизи. Бронза тверже меди, более легкоплавка, устойчива на воздухе, легко полируется, хорошо отливается в формы.
В практическую деятельность человека вошла бронза, положив начало бронзовому веку. Изделия из бронзы отливались у ассирийцев, египтян, индусов и других народов древности. Однако цельные бронзовые статуи древние мастера научились отливать не раньше пятого века до нашей эры. Некоторые из этих произведений искусства достигали гигантских размеров. Таким, например, был разрушенный землетрясением в 227 г. до нашей эры Колосс Родосский- достопримечательность древнего порта Родоса, находившегося на одноименном самом восточном острове Эгейского моря. Созданный Харесом около 290 г. до н. э. в честь бога солнца Гелиоса, 32-метровый Колосс Родосский стоял над входом во внутреннюю гавань порта. Самые крупные суда свободно проходили под ним с развернутыми парусами.
Высокого мастерства в получении литья из бронзы достигли японцы. Достаточно указать на гигантскую статую Будды в храме Тодайдзи весом более четырехсот тонн, отлитую в 749 г., чтобы судить, на каких высотах мастерства находились японские литейщики.
Дошедшие до наших дней статуи (Марк Аврелий, Дискобол, Спящий сатир, Никея и. др.) свидетельствуют о большом распространении и значении бронзы в искусстве древнего мира.
Медь широко использовалась для разнообразных нужд. По свидетельству историков древности, в Александрии изготовляли фальшивые "золотые" монеты. За 330 лет до нашей эры Аристотель писал: "В Индии добывают медь, которая отличается от золота только своим вкусом". Аристотель, конечно, ошибался, но следует, однако, отдать должное его наблюдательности. Вода из золотого сосуда, действительно, не имеет вкуса. Некоторые медные сплавы по внешнему виду трудно отличимы от золота, например томпак. Однако жидкость в сосуде из такого сплава имеет металлический привкус. О таких подделках медных сплавов под золото, очевидно, и говорит Аристотель в своих произведениях.
Не только сама медь, или медные сплавы, были известны древним. Химические анализы древних фресок, произведенные английским химиком Г. Дэви, доказывают наличие в них уксуснокислой меди в виде ярко-зеленой краски, известной с давних времен под названием ярь-медянки. Эта краска найдена в живописи терм (бань) римского императора Тита и в стенных фресках Помпеи. В списках товаров, вывозившихся из древней Александрии, значится "медная зелень", представлявшая, между прочим, предмет роскоши. С помощью этой краски древние модницы подводили зеленые круги под глазами - тогда такой "грим" считали красивым.
В чистом виде медь - это вязкий металл красно-розового цвета с температурой плавления 1083°С, с большой плотностью (9) и исключительно хорошей тепло- и электропроводностью. В этом отношении медь уступает только серебру. Попробуйте представить электротехнику без меди, а машиностроение - без медных сплавов.
В старину медными листами покрывались купола многих московских храмов. Одно из величайших сооружений мировой архитектуры XVI в.- колокольня Ивана Великого, находящаяся в центре Московского Кремля, увенчана луковичной формы главой, покрытой позолоченными листами из чистой меди. Расположенная под главой трехстрочная надпись славянской вязью также выполнена на медных листах по синему фону медными позолоченными буквами.
Медными листами покрыта и южная дверь Успенского собора - главного храма древней Руси.
После того как во второй половине XVI в. француз Христофор Планети - крупнейший издатель и владелец типографии в Антверпене и Лейдене - ввел для воспроизведения иллюстраций гравюру на меди, этот металл стал в больших количествах расходоваться в книгопечатании.
Медь - металл многочисленных сплавов. Вот, например, состав некоторых бронз: 90% меди и 10% олова - пушечный металл, еще сравнительно недавно он применялся для отливки артиллерийских орудий; сплав, содержавший 77-80% меди, 20-23% олова и 1-4% свинца под названием колокольного металла, употреблялся для отливки колоколов.
Из колокольного металла состоит один "часовой" и 10 "четвертных" колоколов, звон которых ежедневно передается со Спасской башни Московского Кремля. Вес "четвертных" колоколов ее колеблется от 300 до 350 кг, "часовой" колокол весит 2160 кг. Колокола отлиты в XVII-XVIII вв., все они украшены художественным орнаментом, некоторые имеют надписи. Одна из них гласит: "Сей колокол для битья четвертей Спасской башни вылит в 1769 г., майя 27 дня. Весу 21 пуд. Лил мастер Семен Можжухин".
Из художественной бронзы состоит находящийся в юго-западном углу Успенского собора в Московском Кремле чудесный образец мастерства русских умельцев - изящный шатер ажурного литья, выполненный в 1625 г. котельных дел мастером Димитрием Сверчковым. В шатре - гробница патриарха Гермогена, замученного в 1612 г. польско-шляхетскими интервентами.
Художественная бронза содержит 80-90 % меди, 5-8 % олова и 1-3% свинца; далее идут сплавы, известные под именем монетной бронзы, имеющие в разных странах разный состав. Более легкоплавкие, дешевые и прочные сплавы с цинком называются латунью. Обыкновенная латунь, или "желтая медь", содержащая 60-80 % меди и 20-40 % цинка, применяется для самых разнообразных технических и хозяйственных изделий. Сплавы: томпак, манганин, дельта-металл, "листовое золото", "новое серебро", "константан" и др. - все они содержат в себе медь.
Металлообрабатывающая, машиностроительная, химическая, стекольная промышленности, сельское хозяйство и ряд других отраслей являются потребителями меди.
Несмотря на большие успехи в технике добычи и сравнительно большое содержание меди в земной коре (0,003% от общего числа атомов), с начала XX в. ощущается дефицит меди. Месторождения меди, имеющие промышленное значение, состоят, главным образом, из сульфидов - соединений меди с серой. Однако содержание меди в этих рудах редко превышает два процента. Извлечение меди поэтому возможно лишь после искусственного увеличения процентного содержания соединений меди путем отделения пустой породы.
Сложный процесс переработки руд на металлическую медь заканчивается электролизом. Чистота электролитической меди составляет около 99,9%. Побочными продуктами на дне электролизной ванны остаются примеси, сопровождающие медь,- золото, серебро, а иногда и платина. Эти "отходы" иногда окупают расходы электролиза.
Медь относится к числу биоэлементов. Являясь ускорителем внутриклеточных химических процессов, медь в небольших количествах необходима для нормального развития растений и животных. Из представителей животного мира наибольшие количества меди содержат осьминоги, устрицы и некоторые другие моллюски. Медь в крови некоторых ракообразных и головоногих играет ту же роль, что железо в крови других животных. Медь входит в состав их дыхательного пигмента - гемоцианина. Соединяясь с кислородом воздуха, это вещество синеет (вот почему у улиток "кровь" голубая), а отдавая кислород тканям - обесцвечивается, т. е. выполняет функцию гемоглобина - переносчика кислорода. Содержание меди в гемоцианине достигает 0,33-0,38%. У высших животных и человека медь содержится главным образом в печени. Недостаточное поступление меди с пищей, а ежедневная потребность в ней человека составляет 0,005 г, ведет к развитию малокровия, снижению гемоглобина, слабости_и т. д. Медь содержится в молоке. Интересно отметить, что клетки опухолей содержат весьма мало меди. И с этой точки зрения заслуживает внимания факт применения в народной медицине соединений меди для лечения опухолей.
Растворимые соединенная меди ядовиты. Поэтому предметы хозяйственного обихода - самовары, чайники, кастрюли и т. д., сделанные из меди, покрывают внутри слоем олова - лудят. Олово защищает медь от растворения и предупреждает возможность пищевых отравлений.

Медь — элемент побочной подгруппы первой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 29. Обозначается символом Cu (лат. Cuprum). Простое вещество медь (CAS-номер: 7440-50-8) — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). C давних пор широко применяется человеком.

История и происхождение названия

Медь — один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. В древности применялась в основном в виде сплава с оловом — бронзы для изготовления оружия и т. п. (см бронзовый век).
Латинское название меди Cuprum (древн. Aes cuprium, Aes cyprium) произошло от названия острова Кипр, где уже в III тысячелетии до н. э. существовали медные рудники и производилась выплавка меди.
У Страбона медь именуется халкосом, от названия города Халкиды на Эвбее. От этого слова произошли многие древнегреческие названия медных и бронзовых предметов, кузнечного ремесла, кузнечных изделий и литья. Второе латинское название меди Aes (санскр, ayas, готское aiz, герм. erz, англ. ore) означает руда или рудник. Сторонники индогерманской теории происхождения европейских языков производят русское слово медь (польск. miedz, чешск. med) от древненемецкого smida (металл) и Schmied (кузнец, англ. Smith). Конечно, родство корней в данном случае несомненно, однако, оба эти слова произведены от греч. рудник, копь независимо друг от друга. От этого слова произошли и родственные названия — медаль, медальон (франц. medaille). Слова медь и медный встречаются в древнейших русских литературных памятниках. Алхимики именовали медь венера (Venus). В более древние времена встречается название марс (Mars).

Физические свойства

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.
Медь образует кубическую гранецентрированную решётку, пространственная группа F m3m, a = 0,36150 нм, Z = 4.
Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности после серебра).
Имеет два стабильных изотопа — 63Cu и 65Cu, и несколько радиоактивных изотопов. Самый долгоживущий из них, 64Cu, имеет период полураспада 12,7 ч и два варианта распада с различными продуктами.
Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем, баббиты — со свинцом и другие.

Химические свойства

Не изменяется на воздухе в отсутствие влаги и диоксида углерода. Является слабым восстановителем, не реагирует с водой, разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами неметаллов. Реагирует при нагревании с галогеноводородами.

Современные способы добычи

90 % первичной меди получают пирометаллургическим способом, 10 % — гидрометаллургическим. Гидрометаллургический способ — это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.
Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди.
Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700—800 °C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.
После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа. Штейн содержит от 30 до 50 % меди, 20-40 % железа, 22-25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450 °C.
С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200—1300 °C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4 — 99,4 % меди, 0,01 — 0,04 % железа, 0,02 — 0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.
Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0 — 99,7 %. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.
Электролитическое рафинирование проводят для получения чистой меди (99,95 %). Электролиз проводят в ваннах, где анод — из меди огневого рафинирования, а катод — из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5-12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.


Источник: Википедия




30. Цинк-Zincum (Zn)


Трудно представить что-либо общее между обыкновенным ведром, необходимым в домашнем обиходе, и... пудрой, находящейся в изящной пудренице на туалетном столике. А общее, тем не менее в этих предметах есть. Это - цинк. В одном случае он тонким слоем покрывает стенки ведра и предохраняет железо от быстрого ржавления и порчи. В другом - тот же цинк, но в соединении с кислородом, в виде белого тонкого порошка, является составной частью пудры. Окись цинка - это пушистый порошок, крупинки которого при сильном увеличении напоминают паука с растопыренными лапками. Этими "лапками" частицы окиси цинка цепляются за шероховатости кожи, при напудривании лица. Пары цинка воспламеняются на воздухе с образованием густого белого дыма - окиси цинка. Окись цинка собирается, очищается от примесей и используется как составная часть пудры. Однако то, что так просто описано, в реальном производстве выглядит куда сложнее: нужны машины для размола, тончайшие сита, очень чистый цинк, пахучие вещества, специальные жиры и многое другое. Да и сама пудра - не главная область применения цинка.
Большого количества окиси цинка требует фармацевтическая промышленность для изготовления присыпок, суспензий, гигиенических паст, различного рода мазей, пластырей и т. д. Широкое практическое применение находит окись цинка для изготовления белил, используемых в малярном деле, живописи, и т. д. Большие количества цинка расходуются на устройство гальванических элементов.
Цинк так прочно вошел в наш быт, что мы его просто не замечаем. А вместе с тем водосточная труба, корыто, крыши многих домов, садовые лейки, проволока для морских канатов, части мясорубок, машинки для чистки овощей изготовлены с применением цинка. Цинк есть в латунном кофейнике и ступке с пестиком для дробления корицы, орехов, приготовления сахарной пудры. В стенках блестящего самовара цинк спрятался под тоненькой пленкой никеля, он есть и в патроне для электрической лампочки, и в гильзе артиллерийского снаряда, и в различных деталях машин. Спички и галоши, целлулоидные игрушки и эмалированную посуду, акварельные краски для детей и даже картинку в книжке нельзя сделать без применения цинка или его соединений. Всюду цинк. В том числе и в организмах человека, животных и растений.
В биологическом отношении цинк - весьма интересный элемент. Растениям для нормального роста и развития необходимы небольшие количества цинка. Но в некоторых растениях содержится много цинка. Так, в широко распространенном подорожнике содержится 0,02% цинка, фиалке-0,05%. Развитие различных грибков, в том числе и дрожжевого, ускоряется в присутствии цинка. У некоторых беспозвоночных животных цинк играет ту же роль, что железо в крови у позвоночных. В ходе развития животного мира происходил своеобразный процесс выбора наилучшего переносчика кислорода в акте дыхания. Наиболее подходящим для этой цели оказалось железо. Однако у одних животных его роль выполняет медь, у других - цинк. Зола некоторых ракушек содержит до 10-15 % цинка. В человеческом организме цинком особенно богаты зубы (0,02%), нервная ткань, печень.
Цинк известен уже давно. Латунь - сплав меди и цинка - знали еще древние. Затем сведения о цинке были утрачены, и только в 1721 г. саксонский металлург И. Генкель (кстати, у него обучался металлургии М. В. Ломоносов) открыл способ получения цинка из руды. Название и химический знак цинка произошли от слова цинкен, которым называли остатки в ретортах, где впоследствии был обнаружен цинк.
В чистом виде цинк - синевато - белый металл. Во влажном воздухе он покрывается тонкой пленкой гидрата окиси, предохраняющей его от дальнейших превращений. Нагретый до 100-150° С цинк становится очень ковким и тягучим, а при 200ё С настолько хрупким, что его можно истолочь в порошок.
Более половины добываемого в мире цинка расходуется на изготовление оцинкованного железа и оцинкованной проволоки для канатов.
Между прочим один из красивейших и обширнейших залов Большого Кремлевского дворца в Москве- Георгиевский зал имеет 18 витых, отлитых из цинка колонн, украшенных великолепным орнаментом и увенчанных статуями побед с лавровыми венками и памятными датами работы скульптора И. П. Витали. Одна из статуй создала в честь воссоединения Украины с Россией.
Цинк не устойчив к действию кислот и щелочей и растворяется в них. Поэтому в оцинкованной посуде не следует варить пищу, квасить капусту, огурцы или помидоры, хранить томат. Возможны очень опасные отравления, так как растворимые соединения цинка ядовиты.

Цинк — элемент побочной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 30. Обозначается символом Zn (лат. Zincum). Простое вещество цинк (CAS-номер: 7440-66-6) при нормальных условиях — хрупкий переходный металл голубовато-белого цвета (тускнеет на воздухе, покрываясь тонким слоем оксида цинка).

История и происхождение названия

Сплав цинка с медью — латунь — был известен ещё в Древней Греции, Древнем Египте, Индии (VII в.), Китае (XI в.). Долгое время не удавалось выделить чистый цинк. В 1746 А. С. Маргграф разработал способ получения чистого цинка путём прокаливания смеси его окиси с углём без доступа воздуха в глиняных огнеупорных ретортах с последующей конденсацией паров цинка в холодильниках. В промышленном масштабе выплавка цинка началась в XVII в.
Слово «цинк» впервые встречается в трудах Парацельса, который назвал этот металл словом «zincum» или «zinken» в книге Liber Mineralium II. Это слово, вероятно, восходит к нем. Zinke, означающее «зубец» (кристаллы металлического цинка похожи на иглы).

Получение

Цинк в природе как самородный металл не встречается. Цинк добывают из полиметаллических руд, содержащих 1-4 % Zn в виде сульфида, а также Cu, Pb, Ag, Au, Cd, Bi. Руды обогащают селективной флотацией, получая цинковые концентраты (50-60 % Zn) и одновременно свинцовые, медные, а иногда также пиритные концентраты. Цинковые концентраты обжигают в печах в кипящем слое, переводя сульфид цинка в оксид ZnO; образующийся при этом сернистый газ SO2 расходуется на производство серной кислоты. Чистый цинк из оксида ZnO получают двумя способами. По пирометаллургическому (дистилляционному) способу, существующему издавна, обожженный концентрат подвергают спеканию для придания зернистости и газопроницаемости, а затем восстанавливают углем или коксом при 1200—1300 °C: ZnO + С = Zn + CO. Образующиеся при этом пары металла конденсируют и разливают в изложницы. Сначала восстановление проводили только в ретортах из обожженной глины, обслуживаемых вручную, позднее стали применять вертикальные механизированные реторты из карборунда, затем — шахтные и дуговые электропечи; из свинцово-цинковых концентратов цинк получают в шахтных печах с дутьем. Производительность постепенно повышалась, но цинк содержал до 3 % примесей, в том числе ценный кадмий. Дистилляционный цинк очищают ликвацией (то есть отстаиванием жидкого металла от железа и части свинца при 500 °C), достигая чистоты 98,7 %. Применяющаяся иногда более сложная и дорогая очистка ректификацией дает металл чистотой 99,995 % и позволяет извлекать кадмий.
Основной способ получения цинка — электролитический (гидрометаллургический). Обожженные концентраты обрабатывают серной кислотой; получаемый сульфатный раствор очищают от примесей (осаждением их цинковой пылью) и подвергают электролизу в ваннах, плотно выложенных внутри свинцом или винипластом. Цинк осаждается на алюминиевых катодах, с которых его ежесуточно удаляют (сдирают) и плавят в индукционных печах. Обычно чистота электролитного цинка 99,95 %, полнота извлечения его из концентрата (при учете переработки отходов) 93-94 %. Из отходов производства получают цинковый купорос, Pb, Cu, Cd, Au, Ag; иногда также In, Ga, Ge, Tl.

Физические свойства

В чистом виде — довольно пластичный серебристо-белый металл. Обладает гексагональной решеткой с параметрами а = 0,26649 нм, с = 0,49431 нм, пространственная группа P 63/mmc, Z = 2. При комнатной температуре хрупок, при сгибании пластинки слышен треск от трения кристаллитов (обычно сильнее, чем «крик олова»). При 100—150 °C цинк пластичен. Примеси, даже незначительные, резко увеличивают хрупкость цинка. Собственная концентрация носителей заряда в цинке 13,1×1028 м-3


Источник: Википедия

Назад




Полезная Информация
 |  Караоке  |  Сонник  |  Вебкамера на МКС  |  Гадания  |  Мировая статистика  |  Сейсмический монитор  |  Население Земли  |  Онлайн полеты самолётов  |  Телевидение  |  Поздравления  |  Нетрадиционная медицина  |  Журналы,газеты  |  Иллюзии  |  Выживание
 |  Омоложение  |  Блог Артема Драгунова  |  Анимация, картинки  |  Улыбнись
 |  Лунный календарь  |  Заговоры  |  Астрология, гороскопы  |  100 лучших фильмов  |  Игры  |  Очищение  |  Фильмы онлайн  | 


На главную Сделать стартовой Добавить в избранное Написать письмо
Copyright © priroda.inc.ru