Введение






Из истории возникновения химии.

Химия, как одна из наук, изучающих явления природы, зародилась в Древнем Египте еще до нашей эры, одной из самых технически развитых стран в те времена. Первые сведения о химических превращениях люди получили, занимаясь различными ремеслами, когда красили ткани, выплавляли металл, изготавливали стекло. Тогда появились определённые приёмы и рецепты, но химия ещё не была наукой. Уже тогда химия была нужна человечеству в основном для того, чтобы получать от природы все необходимые для жизнедеятельности человека материалы - металлы, керамику, известь, цемент, стекло, красители, лекарства, драгоценные металлы и т.д. С самой древности основной задачей химии было получение веществ с необходимыми свойствами.
В Древнем Египте химия считалась божественной наукой и ее секреты тщательно оберегались жрецами. Несмотря на это, некоторые сведения просачивались за пределы страны и доходили до Европы через Византию.
В VIII веке, в завоеванных арабами европейских странах, эта наука распростаняется под названием "алхимия". Следует отметить, что в истории развития химии как науки, алхимия характеризует целую эпоху. Основной задачей алхимиков было найти "философский камень", якобы превращающий любой металл в золото. Несмотря на обширные знания, полученные в результате экспериментов, теоретические воззрения алхимиков отставали на несколько веков. Но поскольку они проводили различные опыты, им удалось сделать несколько важных практических изобретений. Стали использоваться печи, реторы, колбы, аппараты для перегонки жидкостей. Алхимики приготовили важнейшие кислоты, соли и оксиды, описали способы разложения руд и минералов. Как теорию алхимики использовали учение Аристотеля (384- 322 гг до н.э.) о четырех принципах природы (холод, тепло, сухость и влажность) и четырех элементах (земля, огонь, воздух и вода), впоследствии добавив к ним растворимость (соль), горючесть (серу) и металличность (ртуть).
В начале XVI века в алхимии начинается новая эра. Ее возникновение и развитие связано с учениями Парацельса (1493- 1541) и Агриколы (1494- 1555). Парацельс утверждал, что основной задачей химии является изготовление лекарств, а не золота и серебра. Парацельс имел большой успех, предложив лечить некоторые болезни, используя простые неорганические соединения вместо органических экстрактов. Это побудило многих врачей примкнуть к его школе и заинтересоваться химией, что послужило мощным толчком для ее развития. Агрикола же изучал горное дело и металлургию. Его труд "О металлах" более 200 лет являлся учебником по горному делу.
В XVII веке теория алхимии уже не отвечала требованиям практики. В 1661 г. Бойль выступил против господствующих в химии представлений и подверг жесточайшей критике теорию алхимиков. Он впервые определил центральный объект исследования химии: попытался дать определение химического элемента. Бойль считал, что элемент-это предел разложения вещества на составные части. Разлагая природные вещества на их составные, исследователи сделали много важных наблюдений, открыли новые элементы и соединения. Химик стали изучать, что из чего состоит.
В 1700 году Шталем была развита флогистонная теория, согласно которой все тела, способные гореть и окисляться, содержат вещество флогистон. При горении или окислении флогистон покидает тело, в чем и состоит сущность этих процессов. За время почти столетнего господства теории флогистона были открыты многие газы, изучены различные металлы, оксиды, соли. Однако, противоречивость этой теории тормозила дальнейшее развитие химии.
В 1772- 1777 годах Лавуазье, в результате проведенных им экспериментов, доказал, что процесс горения является реакцией соединения кислорода воздуха и горящего вещества. Таким образом, теория флогистона была опровергнута.
В XVIII веке химия начинает развиваться как точная наука. В начале 19 в. англичанин Дж. Дальтон ввёл понятие атомного веса. Каждый химический элемент получил свою важнейшую характеристику. Атомно-молекулярное учение стало основой теоретической химии. Благодаря этому учению Д. И. Менделеев открыл периодический закон, названный его именем, и составил периодическую таблицу элементов. В 19 в. чётко определились два основных раздела химии: органическая и неорганическая. В конце столетия в самостоятельную отрасль оформилась физическая химия. Результаты химических исследований всё шире стали использоваться в практике, а это повлекло за собой развитие химической технологии.

О пользе и вреде химии.

О пользе химии.
Химическое искусство возникло в глубокой древности, и его трудно отличить от производства, потому что, подобно сёстрам-близнецам, оно одновременно рождалось у горна металлурга, в мастерской красильщика и стекольщика. Корни химии проросли в плодородной почве металлургической и фармацевтической практики. Письменных источников, по которым можно было судить об уровне древней ремесленной химии, сохранилось мало. Изучение археологических объектов с помощью современных физико-химических методов приоткрывает завесу в мир ремесла древнего человека. Установлено, что в Месопотамии в 14-11 вв. до н.э. применяли печи, в которых при сжигании угля можно было получить высокую температуру (1100-1200 С),что позволяло выплавлять и очищать металлы, варить стекло из поташа и соды, обжигать керамику. Технохимия и металлургия достигли высокого уровня в Древней Индии. Многочисленные рецепты изготовления мазей, лекарств, красок, изложенные в папирусах, показывают высокий уровень развития ремесленной химии, косметики и фармации уже в середине второго тысячелетия до н.э. По выражению А. Лукаса, "косметика так же стара, как человеческое тщеславие". Широкое распространение в древности получили рецепты изготовления пищевых продуктов, обработки и окраски кож и мехов. В пятом тысячелетии до н. э. Были хорошо развиты практическая технология дубления, крашения, парфюмерное дело, изготовление моющих средств. В одной из сохранившихся рукописей Древнего Египта, в так называемом "Папирусе Эбереса" (16 в. до н. э.),приведён ряд рецептов изготовления фармацевтических препаратов. Описаны способы извлечения из растений различных соков и масел путём выпаривания, настаивания, выжимания, сбраживания, процеживания. Приёмы возгонки, перегонки, экстрагирования, фильтрации широко применялись в различных технологических операциях. Древние специалисты химического искусства: плавильщики, стеклодувы, красильщики, мыловары-были "химиками-технологами". Это были люди чистой практики, для которых "теория" значила мало или вообще ничего не значила. Они устно передавали свой богатый опыт каждому новому поколению. Никто в то время этот опыт не обобщал и не описывал, и если в папирусах сохранились отдельные рецепты, то это было далеко не то, что могли делать руки мастера. А могли они делать немало. Достаточно напомнить о красивой глазури (обливные облицовочные плитки, для окраски которых применялись такие оксиды, как СuО, СоО, FeO, PbO). В Древнем Египте был разработан способ получения чистого золота. Обработку породы начинали с дробления кварца, содержащего золото, затем куски кварца сплавляли в герметически закрытых тиглях с поваренной солью, свинцом, оловом, при этом серебро переходило в хлорид серебра. Кроме золота, в древности были известны серебро, железо, олово, ртуть, медь, свинец. Согласно учению древних, семь металлов олицетворяло семь планет. Усовершенствование процесса получения бронзы вызвало рождение технологии тепловой обработки сплавов.
О вреде химии.
После появления ядерного топлива к химии стали относиться всё хуже и хуже. Первые электростанции, работавшие на ядерном топливе, появились 1950-х годах. В случае утечки такого топлива оно заражает всё вокруг даже воздух. Многие люди, обеспокоенные этим, устраивали демонстрации протеста против использования атомной энергии. До 1950-х годов большинство электростанций работало на нефти на угле. Такое топливо не столь опасно, как ядерное, но его запасы рано или поздно должны истощиться. К тому же выделяющейся дым растворяется в дождевой влаге. Когда такой дождь выпадает на землю, он наносит ущерб пастбищам и лесам. Эти дожди называются кислотными. В 1986 году на атомной электростанции в украинском городе Чернобыле произошла сильная утечка ядерного топлива. Вся местность на много километров была заражена. До сих пор людям небезопасно жить в районе Чернобыля, употреблять произведённые там продукты питания, пить воду из местных водоёмов.

Истоки химических знаний.

2500 - 2000 гг до н.э.
Проникновение меди с Востока в Европу. В Вавилоне изобретены весы - орудие для измерения количества золота и др. материалов. Прообразом для них послужило коромысло носильщика тяжестей.
2000 - 1500 гг до н.э.
В египетских пирамидах найдены образцы стекла и ковкого железа.
1300 - 1000 гг до н.э.
В Древней Греции известны медь, железо, олово, свинец, закаливание стали и действие навоза как удобрения.
1 в. до н.э.
В поэме Лукреция Кара "О природе вещей" несуществующим богам противопоставляются невидимые атомы, с помощью которых объясняется все многообразие явлений окружающего мира, в том числе ветры и бури, распространение запахов, испарение и конденсация воды.
700 - 1000 гг
Арабский алхимик Джабир ибн Хайян и его последователи в результате безуспешных попыток превратить неблагородные металлы в золото применили кристаллизацию и фильтрование при очистке химических веществ; описали получение серной, азотной , уксусной кислот и царской водки (указали на ее способность растворять золото); приготовили нитрат серебра, сулему, нашатырь и белый мышьяк (мышьяковистую кислоту).
1000 - 1200 гг
В "Книге о весах мудрости" арабский ученый Алказини приводит удельные веса 50 различных веществ. В "Книге тайн" Абу-ар-Рази впервые классифицируются все вещества на землистые (минеральные), растительные и животные; описаны кальцинация (обжиг) металлов и других веществ, растворение, возгонка, плавление, дистилляция, альгамирование, сгущение и т.п.
1280 г
Арнальдо Вилланованский описал приготовление эфирных масел.
1300 - 1400 гг
Монаху Бертольду Шварцу приписывают изобретение пороха (в Европе). (В Китае порох был известен еще в начале нашей эры).
1452 - 1519 гг
Великий итальянский художник Леонардо да Винчи путем сжигания свечи под опрокинутым над водой сосудом доказывает, что при сгорании воздух расходуется, но не весь.
XVI в.
Алхимиком Василием Валентином в трактате "Триумфальная колесница антимония" описана соляная кислота, сурьма, висмут (получение и свойства); развиты представления о том, что металлы состоят из трех "начал": ртути, серы и соли.
1493 - 1541 гг
Парацельс преобразует алхимию в ятрохимию, считая, что главная задача химии - служить медицине изготовлением лекарственных средств. От него идет первое, многократно повторяющееся наблюдение, что для горения нужен воздух, а металлы при обращении в окалины увеличивают свой вес.
1556 г
В сочинении Г. Агриколы "12 книг о металлах" обобщены сведения о рудах, минералах и металлах; детально описаны металлургические процессы и тонкости горнорудного дела; приведена систематика металлов по внешним признакам.
1586 - 1592 гг
Г. Галилей сконструировал гидростатические весы для определения плотности твердых тел (1586) , изобрел термометр (1592).
Зарождение научной химии.
1660 - 65 гг
Р. Бойль в книге "Химик-скептик" сформулировал основную задачу химии (исследование состава различных тел, поиск новых элементов), развил представление о понятии "химический элемент" и подчеркнул важность экспериментального метода в химии. Он ввел термин "анализ" применительно к химическим исследованиям, установил обратную пропорциональность объема воздуха величине давления, применил индикаторы для определения кислот и оснований.
1668 г
О. Тахений ввел понятие о соли как продукте взаимодействия кислоты со щелочью.
1669 г
Х. Брандт выделил фосфор как продукт перегонки мочи (первое датированное открытие элемента).
1675 г
Н. Лемери дал определение химии как искусства "разделять различные вещества, содержащиеся в смешанных телах" (минеральных, растительных и животных).
1676 г
Э. Мариотт выразил зависимость объема воздуха от давления.
1707 г
И. Бетгер получил белый фосфор.
1721 г
И. Генкель получил металлический цинк.
1722 г
Ф. Гоффман описал получение сероводорода.
1723 г
Г. Шталь предложил теорию о флогистоне, как о материальном начале горючести.
1724 г
Д.Фаренгейт открыл зависимость точки кипения воды от давления и явление переохлаждения воды.
1730 - 33 гг
Р. Реомюр изобрел спиртовой термометр (1730). Он показал,что разные по составу растворы имеют различные плотности (1733).
1735 г
Г. Брандт открыл кобальт.
1741 - 50 гг
М.В. Ломоносов дал определение элемента (атома), корпускулы (молекулы), простых и смешанных веществ и начал разработку своей корпускулярной теории (1741). Сформулировал основные положения молекулярно-кинетической теории теплоты (1744).Открыл закон сохранения массы веществ (1745). Наблюдал явление пассивации металлов в конц. HNO3
1751 г
А. Кронстедт открыл никель.
1757 г
Д. Блек показал, что при брожении выделяется углекислый газ.
1763 г
М.В. Ломоносов изложил основы горного дела и пробирного искусства, описал способы получения металлов из руд.
1766 г
Г. Кавендиш открыл водород.
1768 г
А. Боме изобрел прибор для определения плотностей жидкостей - ареометр.
1772 г
Д. Резерфорд открыл азот.
1772 - 73 гг
Дж. Пристли открыл хлористый водород , веселящий газ (N2O) (1772) , кислород ("дефлогистированный воздух") , описал свойства аммиака (1773).
1774 г
А. Лавуазье предположил, что атмосферный воздух имеет сложный состав. К. Шееле открыл марганец, барий, описал свойства хлора.
1775 - 77 гг
А. Лавуазье (независимо от Дж. Пристли) открыл кислород, описал его свойства, сформулировал основы кислородной теории горения.
1778 - 81 гг
К. Шееле открыл молибден, вольфрам; получил глицерин, молочную кислоту, синильную кислоту и уксусный альдегид.
1781 г
Г. Кавендиш показал, что при сгорании водорода образуется вода.
1782 г
И. Мюллер фон Райхенштейн открыл теллур.
1785 г
Т. Е. Ловиц открыл явление адсорбции древесным углем из растворов.
1787 г
А. Кроуфорд и У. Круикшанк открыли стронций. Ж. Шарль установил уравнение зависимости давления газа от температуры.
1789 г
М. Клапрот открыл цирконий и уран.
И. Рихтер сформулировал закон эквивалентов.
1794 г
Ю.Гадолин открыл иттрий, что положило начало химии редкоземельных элементов.
1796 г
С. Теннарт и У. Волластон доказали, что алмаз состоит из углерода.
1797 г
Л. Воклен открыл хром.
1798 г
Т. Е. Ловиц ввел понятие о перенасыщенном растворе.
1800 г
У. Никольсон и А. Карлейль осуществили электролиз воды.
Утверждение в химии атомно-молекулярного учения.
1801
Ж.Пруст сформулировал закон постоянства состава.
Ч.Хатчетт открыл ниобий.
1802
Ж. Гей-Люссак нашел зависимость объема газа от температуры и ввел коэффициент термического объемного расширения.
Дж. Дальтон сформулировал закон парциальных давлений газов.
А. Экеберг открыл тантал.
1803
У. Волластон открыл палладий.
Й. Берцелиус и В. Хизингер ( и независимо от них М. Клапрот) открыли цезий.
Дж. Дальтон сформулировал основные положения атомной теории, ввел понятие атомного веса (массы), приняв атомную массу водорода за единицу; составил таблицу атомных масс.
Ж. Гей-Люссак и Л. Тенар создали прибор для сжигания органических веществ с целью их анализа.
У. Генри установил зависимость количества газа, поглощенного жидкостью, от его давления.
1804
У. Волластон открыл родий.
С. Теннарт открыл осмий и иридий.
Дж. Дальтон сформулировал закон простых кратных отношений.
1806
Й. Берцелиус впервые употребил термин "органическая химия".
1807 - 08
Г. Дэви выделил натрий , калий , кальций и магний путем электролиза расплавов их солей ; выдвинул электрохимическую теорию химического сродства.
1808
Ж. Гей-Люссак и Л. Тенар открыли бор.
Ж. Гей-Люссак сформулировал закон газовых объемов.
1809
Г. Дэви получил фтористый водород.
1811
Б. Куртуа открыл йод.
А. Авогадро ди Кваренья установил, что одинаковые объемы всех газов при одинаковых температуре и давлении содержат одинаковое число частиц.
1813
Г. Дэви открыл электрохимическую коррозию металлов.
1814
У. Волластон развил понятие о химических эквивалентах и составил таблицу эквивалентов.
Ж. Гей-Люссак и Л. Тенар ввели понятие об амфотерности.
1815
Г. Дэви выдвинул водородную теорию кислот.
Ф. Штромейер открыл качественную реакцию на крахмал (посинение при добавлении йода).
1817
Ф . Штромейер открыл кадмий.
Й. Арфведсон ( Г. Дэви, 1818 ) открыл литий.
Й. Берцелиус открыл селен; предложил ввести существующую и поныне систему символов и обозначений элементов и их соединений.
Ж.Каванту и П.Пельтье выделили хлорофилл из зеленого пигмента листьев.
1823
Й. Берцелиус открыл кремний.
Й. Деберейнер впервые записал уравнения реакций, используя символы химических элементов.
Ю. Либих и Ф. Велер открыли явление изомерии.
1825
Г. Эрстед открыл алюминий.
М. Фарадей выделил бензол из отстоев светильного газа и определил его элементный состав.
1826
Ж. Дюма предложил способ определения плотности паров веществ и разработал метод определения атомных и молекулярных масс по плотности пара.
1827
Р. Броун открыл хаотическое движение мелких взвешенных частиц в растворе ("броуновское движение").
1828
Й.Берцелиус открыл торий.
Ф.Велер получил мочевину изомеризацией цианата аммония (первый синтез природного органического соединения из неорганических веществ).
1829
Расположение химических элементов в триады Й. Деберейнером.
1830
Ф. Сефтрем открыл ванадий.
Ж. Дюма разработал метод количественного анализа азота в органических соединениях.
1834
М. Фарадей сформулировал законы электролиза и ввел термины "электрод", "катод", "анод", "ион", "катион", "анион", "электролиз", "электрохимический эквивалент".
Ж. Гей-Люссак развил терию радикалов строения органических соединений.
1835
Й. Берцелиус ввел понятие "катализ".
1837
Ю. Либих и Ж. Дюма высказали идею, что органическая химия - химия сложных радикалов и имеет свои "элементы" (циан, амид, бензоил и др.), которые играют роль обычных элементов в минеральной химии.
1839
К. Мосандер открыл редкоземельный элемент лантан.
Ж. Дюма ввел представление о типах органических соединений; показал, что жиры - сложные эфиры глицерина и высших карбоновых кислот.
1840
Х. Шенбейн открыл озон.
Г.Гесс сформулировал основной закон термохимии.
Ю. Либих предложил теорию минерального питания растений.
1841
Й. Берцелиус ввел понятие "аллотропия"
К.Фразениус предложил схему качественного анализа катионов металлов с помощью сероводорода.
Т. Кларк разработал современный метод определения жесткости воды и выявил различие между временной и постоянной жесткостью.
1842
Н.Н.Зинин разработал способ восстановления нитро- соединений ароматического ряда в амины.
1843
К. Мосандер открыл эрбий и тербий.
Ш. Жерар ввел представление о гомологических рядах органических соединений.
1844
К.К.Клаус открыл рутений.
1845
Ш.Мариньяк получил озон пропусканием электрической искры через кислород.
1846
О. Лоран дал определение эквивалента как "количества простого вещества, которое при замещении другого простого вещества играет его роль".
1848
В. Томпсон (Келвин) предложил "абсолютную шкалу температур".
1850
Л. Вильгельми положил начало количественному изучению скоростей протекания химических реакций и показал зависимость скорости от количества реагентов и их природы.
1857
Р. Бунзен сконструировал лабораторную газовую горелку.
1858
А. Кекуле обосновал представление о 4-валентности углерода и предложил общую формулу для гомологического ряда алканов СnH2n+2 .
1859
Н.Н.Бекетов заложил основы металлотермии.
1860
Ж.Стас опубликовал результаты работ по определению атомных масс многих элементов.
1861
А.М. Бутлеров сформулировал основные положения теории строения органических соединений.
Г. Кирхгофф и Р.Бунзен спектроскопическим методом открыли цезий и рубидий.
У. Крукс открыл таллий.
1863
Ф.Райх и Т. Рихтер открыли спектроскопическим методом индий.
А.М. Бутлеров объяснил явление изомерии на основе теории химического строения органических веществ.
1864
П. Мартен изобрел новый способ выплавки стали.
1865
Дж. Ньюлендс предложил систематику химических элементов ("закон октав") , впервые подметив явление периодического изменения свойств элементов в их естественном ряду.
А. Кекуле предложил циклическую структуру бензола.
1867
К. Гульдберг и П. Вааге сформулировали закон действующих масс для равновесных реакций.
1868
Г. Вихельхаус ввел термин "валентность"
1869
Д.И.Менделеев разработал основные положения учения о периодичности, сформулировал периодический закон и предложил короткую форму периодической системы элементов.
Систематизация химических элементов на основе их атомных масс Л.Мейером.
В. В. Марковников развил представления о взаимном влиянии атомов в органических соединениях, сформулировал правило присоединения несимметричных реагентов к несимметричным алкенам (правило Марковникова).
1870
Д. И. Менделеев изменил величины атомных масс некоторых элементов (например, урана); предсказал существование и свойства нескольких неизвестных элементов, в том числе "экаалюминия", "экабора", и "экасилиция".
1874
Д.И.Менделеев вывел обобщенное уравнение состояния идеального газа (уравнение Клайперона- Менделеева).
1875
П. Лекок де Буабодран открыл галлий (предсказанный Д. И. Менделеевым "экаалюминий").
1878
Ш. Мариньяк открыл редкоземельный элемент иттербий.
1879
Л. Нильсен открыл скандий (предсказанный Д. И. Менделеевым "экабор").
П. Клеве открыл редкоземельные элементы тулий и гольмий.
П. Лекок де Буабодран открыл редкоземельный элемент самарий.
М. Бертло ввел термины "экзотермическая" и "эндотермическая" реакции.
1883
И. Кьельдаль предложил метод определения % азота в органических соединениях.
С. Аррениус (лауреат Нобелевской премии 1903 г.) открыл явление электропроводности водных растворов кислот и оснований.
Я. Г. Вант-Гофф (лауреат Нобелевской премии 1901 г) разработал учение о скоростях химических
реакций.
1884
А. Ле Шателье сформулировал общий закон смещения химического равновесия.
1885
К. Ауэр фон Вельсбах открыл редкоземельные элементы празеодим и неодим.
1886
К. Винклер открыл германий (предсказанный Д.И. Менделеевым "экасилиций").
П. Лекок де Буабодран открыл редкоземельные элементы гадолиний и диспрозий.
А. Муассан получил фтор в свободном виде.
У.Крукс высказал идею, что у каждого элемента могут быть разновидности атомов, различающиеся по атомным массам (изотопы).
1887
С. Аррениус (лауреат Нобелевской премии 1903 г.) сформулировал основные положения теории электролитической диссоциации ; рассчитал константу диссоциации воды.
Д.И. Менделеев разработал гидратную теорию растворов.
1888
В. Оствальд (лауреат Нобелевской премии 1909 г.) сформулировал закон разбавления.
1889
В. Нернст заложил основы электрохимической термодинамики; вывел уравнения для электродных потенциалов и ЭДС гальванических элементов.
С. Аррениус (лауреат Нобелевской премии 1903 г.) выдвинул представление об активных молекулах, число которых возрастает с температурой; вывел уравнение зависимости константы скорости реакции от частоты столкновения молекул, энергии активации и температуры.
1892
Дж. Дьюар изобрел сосуд (термос), позволяющий длительное время хранить сжиженные газы.
Э. Фишер получил моносахариды с 7-9 атомами углерода.
На Международном конгрессе химиков в Женеве принята номенклатура органических соединений.
1894
У. Рамзай и У. Релей открыли аргон
В.Оствальд (лауреат Нобелевской премии 1909 г.) дал определение катализа ; обосновал механизм действия кислотно-основных индикаторов.
1895
В. Рентген открыл Х-лучи.
1896
А. Беккерель открыл явление радиоактивности.
1897
Дж. Томпсон (и независимо Э. Вихерт) открыли электрон.
1898
У. Рамзай и М.Траверс открыли криптон, неон и ксенон.
П. и М. Кюри открыли полоний и радий.
1899
А.Дебьерн открыл актиний.
Великие открытия в XX веке.
1900
М. Планк заложил основы квантовой теории.
К.Винклером и Р.Кничем разработаны основы промышленного синтеза серной кислоты контактным способом.
1901
Э. Демарсе открыл редкоземельный элемент европий.
1903
М.С.Цвет заложил основы метода адсорбционной хроматографии.
Э.Фишер установил, что белки построены из альфа-аминокислот; осуществил первые синтезы пептидов.
1905
А. Вернер предложил современный вариант длинной формы графического изображения периодической системы элементов.
1907
Ж. Урбэн открыл редкоземельный элемент лютеций, последний из стабильных редкоземельных элементов.
1908
В.Оствальдом (лауреат Нобелевской премии 1909 г.) разработаны основы технологии производства азотной кислоты каталитическим окислением аммиака.
1909
С. Серенсен ввел водородный показатель рН .
И. Лэнгмюр (лауреат Нобелевской премии 1932 г.) разработал основы современного учения об адсорбции.
1910
С.В.Лебедев получил первый образец синтетического бутадиенового каучука.
1911
Э. Резерфорд (лауреат Нобелевской премии 1908 г.) предложил ядерную (планетарную) модель атома.
1913
Н. Бор (лауреат Нобелевской премии 1922 г.) сформулировал основные постулаты квантовой теории атома, согласно которой электроны в атоме обладают определенной энергией и вследствие этого могут вращаться в электронной оболочке лишь на определенных энергетических уровнях.
К. Фаянс и Ф.Содди (лауреат Нобелевской премии 1921 г.) сформулировали закон радиоактивных сдвигов (тем самым структура радиоактивных семейств была увязана со структурой периодической системы элементов).
А. Ван ден Брук высказал предположение, что номер элемента в периодической системе численно равен заряду его атома.
1914
Р. Мейер предложил помещать все редкоземельные элементы в побочной подгруппе III группы периодической системы.
1915
И. Штарк ввел понятие "валентные электроны"
1916
В. Коссель и Г. Льюис разработали теорию атомной связи и ионной связи.
Н.Д.Зелинским сконструирован противогаз.
1919
Э. Резерфорд (лауреат Нобелевской премии 1908 г.) осуществил первую ядерную реакцию искусственного превращения элементов.
1920
Важнейшие исследования строения атома, приведшие к современным представлениям о модели атома. В этих исследованиях участвовали Л. Де Бройль (лауреат Нобелевской премии 1929 г.) (волновая природа электрона), Э. Шредингер (лауреат Нобелевской премии 1933 г.) (ввел основное уравнение квантовой механики) , В.Гейзенберг (лауреат Нобелевской премии 1932 г.), М. Дирак (лауреат Нобелевской премии 1933 г.).
1923
Г. Хевеши и Д. Костер открыли гафний.
И. Бренстед предложил считать кислотами вещества, отдающие протоны, а основаниями - вещества, присоединяющие протоны.
1925
В. Паули сформулировал принцип запрета.
Г.Уленбек и С. Гоудсмит ввели представление о спине электрона.
1931
Э. Хюккель заложил основы квантовой химии органических соединений. Сформулировал (4n + 2) - правило ароматической стабильности, устанавливающее принадлежность вещества к ароматическому ряду.
С.В. Лебедев решил проблемы промышленного получения синтетического каучука.
1932
Дж. Чедвик (лауреат Нобелевской премии 1935 г.) открыл нейтрон.
Д.Д. Иваненко предложил протонно-нейтронную модель атомного ядра.
Л. Полинг (лауреат Нобелевской премии 1954 г.) количественно определил понятие электроотрицательности, предложил шкалу ЭО и выразил зависимость между ЭО и энергией связи атомов.
1933
П. Блэкетт и Г. Оккиалини открыли позитрон.
1934
И. и Ж. Кюри (лауреаты Нобелевской премии 1935 г.) открыли явление искусственной радиоактивности.
1937
К. Перрье и Э. Сегре открыли новый элемент - первый искусственно синтезированный элемент технеций с Z = 43.
1939
М. Перей открыл франций - элемент с Z = 87.
Разработаны технологии промышленных производств искусственных волокон ( найлон, перлон) 1940
Д. Корсон , К. Маккензи , Э. Сегре синтезировали астат (Z = 85).
Э. Макмиллан (лауреат Нобелевской премии 1951 г.), Ф. Эйблсон синтезировали первый трансурановый элемент нептуний с Z = 93 .
Г. Сиборг , Э. Макмиллан (лауреаты Нобелевской премии 1951 г.) , Дж. Кеннеди , А. Валь синтезировали плутоний с Z = 94 .
1944
Г. Сиборг (лауреат Нобелевской премии 1951 г.), Р. Джеймс ,А.Гиорсо синтезировали кюрий с Z = 96. Г. Сиборг выдвинул актиноидную концепцию размещения трансурановых элементов в периодической системе.
1945
Г. Сиборг (лауреат Нобелевской премии 1951 г.), Р. Джеймс , П. Морган , А. Гиорсо синтезировали америций с Z = 95.
1947
Э. Чаргафф впервые получил чистые препараты ДНК.
1949
Г. Сиборг (лауреат Нобелевской премии 1951 г.), С. Томпсон , А. Гиорсо синтезировали берклий (Z = 97) и калифорний (Z = 98).
1951
Л. Полинг (лауреат Нобелевской премии 1954 г.) разработал модель полипептидной спирали.
В.М. Клечковским сформулировано правило (n + l) - заполнения электронных оболочек и подоболочек атомов по мере роста Z.
Т. Кили , П. Посон синтезировали небензоидное ароматическое соединение "сэндвичевой" структуры - ферроцен (С5H5)2Fe.
1952
Г. Сиборг (лауреат Нобелевской премии 1951 г.), А. Гиорсо и др. открыли эйнштейний (Z = 99) и фермий (Z = 100).
1953
Дж. Уотсон и Ф. Крик (лауреаты Нобелевской премии 1962 г.) предложили модель ДНК - двойную спираль из нитей полинуклеотидов , связанных водородными "мостиками".
А. Тодд и Д. Браун разработали схему строения РНК.
1954
К. Циглер , Дж. Натт (лауреаты Нобелевской премии 1963 г.) предложили смешанные металлоорганические катализаторы для промышленного синтеза полимеров.
1955
Г. Сиборг (лауреат Нобелевской премии 1951 г.) и др. cинтезировали менделеевий ( Z = 101 )
Н. Н. Семенов и С. Хиншельвуд (лауреаты Нобелевской премии 1962 г.) провели фундамендальные исследования механизма радикальных химических реакций .
1958
Открытие механизма биосинтеза РНК и ДНК А. Корнбергом и С. Очоа (лауреаты Нобелевской премии 1959 г.).
1961
Установлена новая Международная шкала атомных масс - за единицу принята 1/12 массы изотопа 12С .
А. Гиорсо , Т. Сиккеланд , А. Ларош , Р. Латимер синтезировали лоуренсий ( Z = 103 ).
1962
Получены первые соединения инертных газов.
1963
Р. Меррифильдом разработан твердофазный метод пептидного синтеза; осуществлен полный синтез инсулина - первый химический синтез белка.
1964-84 гг
Г.Н. Флеров с сотр. cинтезировал курчатовий ( Z = 104 ) (1964) , нильсборий ( Z = 105 ) (1970);
Ю.Ц. Оганесян с сотр. получили элементы с Z=106 (1974), Z= 107 (1976), Z= 108 (1982), Z= 110 (1986);
П. Армбрустер с сотр. синтезировал элемент с Z= 109 (1984).
Источник: http://www.informika.ru


ВВЕДЕНИЕ В ОБЩУЮ ХИМИЮ

Электронное учебное пособие
Москва 2013

4. Периодический закон и периодическая система Д. И. Менделеева

В результате изучения данной темы вы узнаете:

  • почему водород помещают одновременно в первой и в седьмой группах периодической системы;
  • почему у некоторых элементов (например, Cr и Cu) происходит «провал» внешнего s – электрона на предвнешнюю d – оболочку;
  • что является основным различием в свойствах элементов главных и побочных подгрупп;
  • какие электроны являются валентными для элементов главных и побочных подгрупп;
  • чем обусловлено неравномерное увеличение энергии ионизации при переходе от Li к Ne;
  • какое основание является более сильным: LiOH или KOH; какая кислота сильнее: HCl или HI.

В результате изучения данной темы вы научитесь:

  • записывать электронные конфигурации элементов;
  • устанавливать электронную структуру атома элемента по его положению в соответствующем периоде и подгруппе периодической системы, а значит, и его свойства;
  • из рассмотрения электронной структуры невозбужденных атомов определять число электронов, которые могут участвовать в образовании химических связей, а также возможные степени окисления элементов;
  • сравнивать относительную силу кислот и оснований.

Учебные вопросы:


4.1. Периодический закон Д.И. Менделеева

Периодический закон – величайшее достижение химической науки, основа всей современной химии. С его открытием химия перестала быть описательной наукой, в ней стало возможным научное предвидение.

Периодический закон открыт Д. И. Менделеевым в 1869 г. Ученый сформулировал этот закон так: «Свойства простых тел, также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Более детальное изучение строения вещества показало, что периодичность свойств элементов обусловлена не атомной массой, а электронным строением атомов.

Заряд ядра является характеристикой, определяющей электронное строение атомов, а следовательно, и свойства элементов. Поэтому в современной формулировке Периодический закон звучит так: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от порядкового номера (от величины заряда ядра их атомов).

Выражением Периодического закона является периодическая система элементов.

4.2. Периодическая система Д. И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра. Периоды 1, 2, 3, 4, 5, 6 содержат соответственно 2, 8, 8, 18, 18, 32 элемента. Седьмой период не завершен. Периоды 1, 2 и 3 называют малыми, остальные - большими.

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородным газом (Ne, Ar, Kr, Xe, Rn), которому предшествует типичный неметалл. В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства, поскольку с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне.

В первом периоде, кроме гелия, имеется только один элемент - водород. Его условно размещают в IA или VIIA подгруппе, так как он проявляет сходство и со щелочными металлами, и с галогенами. Сходство водорода со щелочными металлами проявляется в том, что водород, как и щелочные металлы является восстановителем и, отдавая один электрон, образует однозарядный катион. Больше общего у водорода с галогенами: водород, как и галогены неметалл, его молекула двухатомна, он может проявлять окислительные свойства, образуя с активными металлами солеподобные гидриды, например, NaH, CaH2.

В четвертом периоде вслед за Са расположены 10 переходных элементов (декада Sc - Zn), за которыми находятся остальные 6 основных элементов периода (Ga - Кг). Аналогично построен пятый период. Понятие переходный элемент обычно используется для обозначения любого элемента с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположена вставная декада d–элементов (La - Hg), причем после первого переходного элемента La следуют14 f–элементов - лантаноидов ( Се - Lu). После Hg располагаются остальные 6 основных р-элементов шестого периода (Тl - Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th - Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

Таким образом, каждый элемент в периодической системе занимает строго определенное положение, которое отмечается порядковым, или атомным, номером.

В периодической системе по вертикали расположены восемь групп (I – VIII), которые в свою очередь делятся на подгруппы - главные, или подгруппы А и побочные, или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Сходство элементов внутри каждой подгруппы - наиболее заметная и важная закономерность в периодической системе. В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические. При этом происходит увеличение устойчивости соединений элементов в низшей для данной подгруппы степени окисления. В побочных подгруппах – наоборот – сверху вниз металлические свойства ослабевают и увеличивается устойчивость соединений с высшей степенью окисления.

4.3. Периодическая система и электронные конфигурации атомов

Поскольку при химических реакциях ядра реагирующих атомов не изменяются, то химические свойства атомов зависят от строения их электронных оболочек.

Заполнение электронных слоев и электронных оболочек атомов происходит в соответствии с принципом Паули и правилом Хунда.

Принцип Паули (запрет Паули)

Два электрона в атоме не могут иметь четыре одинаковых квантовых числа (на каждой атомной орбитали может находиться не более двух электронов).

Принцип Паули определяет максимальное число электронов, обладающих данным главным квантовым числом n (т.е. находящихся на данном электронном слое): Nn = 2n2. На первом электронном слое (энергетическом уровне) может быть не больше 2 электронов, на втором – 8, на третьем – 18 и т. д.

В атоме водорода, например, имеется один электрон, который находится на первом энергетическом уровне в 1s – состоянии. Спин этого электрона может быть направлен произвольно (ms = +1/2 или ms = –1/2). Следует подчеркнуть еще раз, что первый энергетический уровень состоит из одного подуровня – 1s, второй энергетический уровень – из двух подуровней – 2s и 2р, третий – из трех подуровней – 3s, 3p, 3d и т.д. Подуровень, в свою очередь, содержит орбитали, число которых определяется побочным квантовым числом l и равно (2l + 1). Каждая орбиталь условно обозначается клеткой, находящийся на ней электрон – стрелкой, направление которой указывает на ориентацию спина этого электрона. Значит, состояние электрона в атоме водорода можно представить как 1s1 или изобразить в виде квантовой ячейки, рис. 4.1:

Рис. 4.1. Условное обозначение электрона в атоме водорода на 1s орбитали

Для обоих электронов атома гелия n = 1, l = 0, ml = 0, ms = +1/2 и –1/2. Следовательно, электронная формула гелия 1s2. Электронная оболочка гелия завершена и очень устойчива. Гелий - благородный газ.

Согласно принципу Паули, на одной орбитали не может быть двух электронов с параллельными спинами. Третий электрон в атоме лития занимает 2s-орбиталь. Электронная конфигурация Li: 1s22s1, а у бериллия 1s22s2. Поскольку 2s-орбиталь заполнена, то пятый электрон у атома бора занимает 2р-орбиталь. При n = 2 побочное (орбитальное) квантовое число l принимает значения 0 и 1. При l = 0 (2s-состояние) ml = 0, а при l = 1 (2p – состояние) ml может быть равным +1; 0; –1. Состоянию 2р соответствуют три энергетические ячейки, рис. 4.2.

Рис. 4.2. Расположение электронов атома бора на орбиталях

Для атома азота (электронная конфигурация 1s22s22p3 два электрона на первом уровне, пять - на втором) возможны два следующих варианта электронного строения, рис. 4.3:

Рис. 4.3. Возможные варианты расположения электронов атома азота на орбиталях

В первой схеме, рис.4.3а, суммарный спин равен 1/2 (+1/2 –1/2 +1/2), во второй (рис.4.3б) суммарный спин равен 3/2 (+1/2 +1/2 +1/2). Расположение спинов определяется правилом Хунда , которое гласит: заполнение энергетических уровней происходит таким образом, чтобы суммарный спин был максимальным.

Таким образом, из двух приведенных схем строения атома азота устойчивому состоянию (с наименьшей энергией) отвечает первая, где все р-электроны занимают различные орбитали. Орбитали подуровня заполняются так: сначала по одному электрону с одинаковыми спинами, а затем по второму электрону с противоположными спинами.

Начиная с натрия, заполняется третий энергетический уровень с n = 3. Распределение электронов атомов элементов третьего периода на орбиталях показано на рис. 4.4.

Рис. 4.4. Распределение электронов на орбиталях для атомов элементов третьего периода в основном состоянии

В атоме каждый электрон занимает свободную орбиталь с наиболее низкой энергией, отвечающей его наибольшей связи с ядром. В 1961 г. В.М. Клечковский сформулировал общее положение, согласно которому энергия электронных орбиталей возрастает в порядке увеличения суммы главного и побочного квантовых чисел (n + l), причем в случае равенства этих сумм, меньшей энергией обладает орбиталь с меньшим значением главного квантового числа n .

Последовательность энергетических уровней в порядке возрастания энергии примерно следующая:

1s < 2s < 2p < 3s < 3р < 4s ≈ 3d < 4p < 5s ≈ 4d < 5p < 6s ≈ 5d ≈ 4f < 6p.

Рассмотрим распределение электронов на орбиталях атомов элементов четвертого периода (рис. 4.5).

Рис. 4.5. Распределение электронов по орбиталям атомов элементов четвертого периода в основном состоянии

После калия (электронная конфигурация 1s22s22p63s23p64s1) и кальция (электронная конфигурация 1s22s22p63s23p64s2) происходит заполнение электронами внутренней 3d-оболочки (переходные элементы Sc - Zn). Следует отметить существование двух аномалий: у атомов Сr и Сu на 4 s -оболочке находятся не два электрона, а один, т.е. происходит так называемый «провал» внешнего 4s-электрона на предшествующую 3d-оболочку. Электронное строение атома хрома можно представить следующим образом (рис. 4.6).

Рис. 4.6. Распределение электронов по орбиталям для атома хрома

Физическая причина «нарушения» порядка заполнения связана с различной проникающей способностью электронных орбиталей к ядру, особой устойчивостью электронных конфигураций d5 и d10, f7 и f14, отвечающих заполнению электронных орбиталей одним или двумя электронами, а также экранирующим действием внутренних электронных слоев заряда ядра.

Электронные конфигурации атомов Mn, Fe, Co, Ni, Cu и Zn отражены следующими формулами:

25Mn 1s22s22p63s23p63d54s2,

26Fe 1s22s22p63s23p63d64s2,

27Co 1s22s22p63s23p63d74s2,

28Ni 1s22s22p63s23p63d84s2,

29Cu 1s22s22p63s23p63d104s1,

30Zn 1s22s22p63s23p63d104s2.

После цинка, начиная с 31 элемента - галлия вплоть до 36 элемента - криптона продолжается заполнение четвертого слоя (4р – оболочки). Электронные конфигурации этих элементов имеют следующий вид:

31Ga 1s22s22p63s23p63d104s24p1,

32Ge 1s22s22p63s23p63d104s24p2,

33As 1s22s22p63s23p63d104s24p3,

34Se 1s22s22p63s23p63d104s24p4,

35Br 1s22s22p63s23p63d104s24p5,

36Kr 1s22s22p63s23p63d104s24p6.

Следует отметить, что если не нарушается запрет Паули, в возбужденных состояниях электроны могут располагаться на других орбиталях атомов.

4.4. Типы химических элементов

Все элементы периодической системы подразделяются на четыре типа:

1. У атомов s–элементов заполняются s–оболочки внешнего слоя (n). К s–элементам относятся водород, гелий и первые два элемента каждого периода.

2. У атомов р–элементов электронами заполняются р–оболочки внешнего уровня (np). К р -элементам относятся последние 6 элементов каждого периода (кроме первого).

3. У d–элементов заполняется электронами d–оболочка второго снаружи уровня (n–1) d . Это элементы вставных декад больших периодов, расположенных между s– и p– элементами.

4. У f–элементов заполняется электронами f–подуровень третьего снаружи уровня (n–2) f . К семейству f–элементов относятся лантаноиды и актиноиды.

Из рассмотрения электронной структуры невозбужденных атомов в зависимости от порядкового номера элемента следует:

  • Число энергетических уровней (электронных слоев) атома любого элемента равно номеру периода, в котором находится элемент. Значит, s–элементы находятся во всех периодах, р–элементы – во втором и последующих, d–элементы – в четвертом и последующих и f–элементы – в шестом и седьмом периодах.

  • Номер периода совпадает с главным квантовым числом внешних электронов атома.

  • s– и p–элементы образуют главные подгруппы, d–элементы – побочные подгруппы, f–элементы образуют семейства лантаноидов и актиноидов. Таким образом, подгруппа включает элементы, атомы которых обычно имеют сходное строение не только внешнего, но и предвнешнего слоя (за исключением элементов, в которых имеет место «провал» электрона).

  • Номер группы, как правило, указывает число электронов, которые могут участвовать в образовании химических связей. В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предпоследних оболочек. Это является основным различием в свойствах элементов главных и побочных подгрупп.

Элементы с валентными d– или f–электронами называются переходными.

Номер группы, как правило, равен высшей положительной степени окисления элементов, проявляемой ими в соединениях. Исключением является фтор – его степень окисления равна –1; из элементов VIII группы только для Os, Ru и Xe известна степень окисления +8.

4.5. Периодичность свойств атомов элементов

Такие характеристики атомов, как их радиус, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронным строением атома.

Различают радиусы атомов металлов и ковалентные радиусы атомов неметаллов. Радиусы атомов металлов вычисляются на основе межатомных расстояний, которые хорошо известны для большинства металлов на основе экспериментальных данных. При этом радиус атома металла равен половине расстояния между центрами двух соседних атомов. Аналогичным образом вычисляются ковалентные радиусы неметаллов в молекулах и кристаллах простых веществ. Чем больше атомный радиус, тем легче отрываются от ядра внешние электроны (и наоборот). В отличие от атомных радиусов, радиусы ионов – условные величины.

Слева направо в периодах величина атомных радиусов металлов уменьшается, а атомных радиусов неметаллов изменяется сложным образом, так как она зависит от характера химической связи. Во втором периоде, например, радиусы атомов сначала уменьшаются, а затем возрастают, особенно резко при переходе к атому благородного газа.

В главных подгруппах радиусы атомов увеличиваются сверху вниз, так как возрастает число электронных слоев.

Радиус катиона меньше радиуса соответствующего ему атома, причем с увеличением положительного заряда катиона его радиус уменьшается. Наоборот, радиус аниона всегда больше радиуса соответствующего ему атома. Изоэлектронными называют частицы (атомы и ионы), имеющие одинаковое число электронов. В ряду изоэлектронных ионов радиус снижается с уменьшением отрицательного и возрастанием положительного радиуса иона. Такое уменьшение имеет место, например в ряду: O2–, F, Na+, Mg2+, Al3+.

Энергия ионизации – энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. Она обычно выражается в электронвольтах (1 эВ = 96,485 кДж/моль). В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра. В главных подгруппах сверху вниз она уменьшается, т. к. увеличивается расстояние электрона до ядра и возрастает экранирующее действие внутренних электронных слоев.

В таблице 4.1 приведены значения энергий ионизации (энергий отрыва первого, второго и т.д. электронов) для некоторых атомов.

Во втором периоде при переходе от Li к Ne энергия отрыва первого электрона возрастает (см. таблицу 4.1). Однако, как видно из таблицы, энергия ионизации возрастает неравномерно: у следующих за бериллием и азотом соответственно бора и кислорода наблюдается ее некоторое уменьшение, что обусловлено особенностями электронного строения атомов.

Внешняя s–оболочка бериллия полностью заполнена, поэтому у следующего за ним бора электрон поступает на р-орбиталь. Этот р-электрон менее прочно связан с ядром, чем s–электрон, поэтому отрыв р–электронов требует меньшей затраты энергии.

Таблица 4.1.

Энергии ионизации I атомов некоторых элементов

Атом

I , эВ

1

2

3

4

5

Н

Не

Li

Be

В

С

N

О

F

Ne

Na

Mg

Al

Si

P

S

Cl

Ar

К

Ca

13,595

24,581

5,390

9,320

8,296

11,256

14,53

13,614

17,418

21,559

5,138

7,644

5,984

8,149

10,484

10,357

13,01

15,755

4,339

6,111

54,403

75,619

18,206

25,149

24,376

29,593

35,146

34,98

41,07

47,29

15,031

18,823

16,34

19,72

23,4

23,80

27,62

31,81

11,868

122,419

153,850

37,920

47,871

47,426

54,934

62,646

63,5

71,65

80,12

28,44

33,46

30,156

35,0

39,90

40,90

46,0

51,21

217,657

259,298

64,48

77,450

77,394

87,23

97,16

98,88

109,29

119,96

45,13

51,354

47,29

53,5

59,79

60,90

67,0

340,127

392,00

97,863

113,873

114,214

126,4

138,60

141,23

153,77

166,73

65,007

72,5

67,80

75,0

82,6

84,39

На каждой р-орбитали атома азота имеется по одному электрону. У атома кислорода электрон поступает на р-орбиталь, которая уже занята одним электроном. Два электрона, находящиеся на одной и той же орбитали, сильно отталкиваются, поэтому оторвать электрон от атома кислорода легче, чем от атома азота.

Наименьшее значение энергии ионизации имеют щелочные металлы, поэтому они обладают ярко выраженными металлическими свойствами, наибольшая величина энергии ионизации у инертных газов.

Сродство к электрону – энергия, выделяющаяся при присоединении электрона к нейтральному атому. Сродство к электрону, как и энергию ионизации, обычно выражают в электронвольтах. Наибольшее сродство к электрону – у галогенов, наименьшее – у щелочных металлов. В таблице 4.2 приведены значения сродства к электрону для атомов некоторых элементов.

Таблица 4.2.

Сродство к электрону атомов некоторых элементов

Атом

Е, эВ

Атом

Е, эВ

Атом

Е, эВ

Атом

Е, эВ

Н

Не

Li

Be

В

0,754

0

0,620

0

0,28

С

N

О

F

Ne

1,268

-0,07

1,46

3,398

0

Na

Mg

Al

Si

P

0,546

0

0,46

1,385

0,074

S

Cl

Br

I

Se

2,077

3,615

3,364

3,061

2,020

Электроотрицательность – способность атома в молекуле или ионе притягивать к себе валентные электроны других атомов. Электроотрицательность (ЭО) как количественная мера – приближенная величина. Предложено около 20 шкал электроотрицательностей, наибольшее признание из которых получила шкала, разработанная Л. Полингом. На рис. 4.7 приведены значения ЭО по Полингу.

Рис. 4.7. Электроотрицательность элементов (по Полингу)

Наиболее электроотрицательным из всех элементов по шкале Полинга является фтор. Его ЭО принята равной 4. Наименее электроотрицательный – цезий. Водород занимает промежуточное положение, поскольку при взаимодействии с одними элементами он отдает электрон, а при взаимодействии с другими – приобретает.

4.6. Кислотно-основные свойства соединений; схема Косселя

Для объяснения характера изменения кислотно-основных свойств соединений элементов Коссель (Германия) предложил использовать простую схему, основанную на предположении о том, что в молекулах существует чисто ионная связь и между ионами имеет место кулоновское взаимодействие. Схема Косселя описывает кислотно-основные свойства соединений, содержащих связи Э-Н и Э-О-Н, в зависимости от заряда ядра и радиуса образующего их элемента.

Схема Косселя для двух гидроксидов металлов, например, LiOH и KOH показана на рис. 4.8.

Рис. 4.8. Схема Косселя для LiOH и KOH

Как видно из представленной схемы, радиус иона Li+ меньше радиуса иона К+ и ОН- –группа связана прочнее с катионом лития, чем с катионом калия. В результате КОН будет легче диссоциировать в растворе и основные свойства гидроксида калия будут выражены сильнее.

Аналогичным образом можно проанализировать схему Косселя для двух оснований CuOH и Cu(OH)2. Поскольку радиус иона Cu2+ меньше, а заряд – больше, чем у иона Cu+, ОН- -группу будет прочнее удерживать ион Cu2+. В результате основание Cu(OH)2 будет более слабым, чем CuOH.

Таким образом, сила оснований возрастает при увеличении радиуса катиона и уменьшении его положительного заряда .

В главных подгруппах сверху вниз сила оснований увеличивается, поскольку в этом направлении возрастают радиусы ионов элементов. В периодах слева направо происходит уменьшение радиусов ионов элементов и увеличение их положительного заряда, поэтому в этом направлении сила оснований уменьшается.

Схема Косселя для двух бескислородных кислот, например, HCl и HI показана на рис. 4.9

Рис. 4.9. Схема Косселя для HCl и HI

Поскольку радиус хлорид-иона меньше, чем иодид-иона, ион Н+ прочнее связан с анионом в молекуле хлороводородной кислоты, которая будет слабее, чем иодоводородная кислота. Таким образом, сила бескислородных кислот возрастает с увеличением радиуса отрицательного иона .

Сила кислородсодержащих кислот изменяется противоположным образом. Она увеличивается с уменьшением радиуса иона и увеличением его положительного заряда. На рис. 4.10 представлена схема Косселя для двух кислот HClO и HClO4.

Рис. 4.10. Схема Косселя для HClO и HClO4

Ион С17+ прочно связан с ионом кислорода, поэтому протон легче будет отщепляться в молекуле НС1О4. В то же время связь иона С1+ с ионом О2- менее прочная, и в молекуле НС1О протон будет сильнее удерживаться анионом О2-. В результате HClO4 будет более сильной кислотой, чем HClO.

Достоинством схемы Косселя является то, что она с использованием простой модели позволяет объяснить характер изменения кислотно-основных свойств соединений в ряду сходных веществ. Вместе с тем эта схема является чисто качественной. Она позволяет лишь сравнивать свойства соединений и не дает возможность определить кислотно-основные свойства произвольно выбранного одного соединения. Недостатком этой модели является то, что в ее основу положены только электростатические представления, в то время как в природе не существует чистой (стопроцентной) ионной связи.

4.7. Окислительно-восстановительные свойства элементов и их соединений

Изменение окислительно-восстановительных свойств простых веществ легко установить, рассматривая характер изменения электроотрицательности соответствующих элементов. В главных подгруппах сверху вниз электроотрицательность уменьшается, что приводит к уменьшению окислительных и увеличению в этом направлении восстановительных свойств. В периодах слева направо электроотрицательность возрастает. В результате в этом направлении восстановительные свойства простых веществ уменьшаются, а окислительные – возрастают. Таким образом, сильные восстановители располагаются в левом нижнем углу периодической системы элементов (калий, рубидий, цезий, барий), в то время как сильные окислители находятся в правом верхнем ее углу (кислород, фтор, хлор).

Окислительно-восстановительные свойства соединений элементов зависят от их природы, величины степени окисления элементов, положения элементов в периодической системе и ряда других факторов.

В главных подгруппах сверху вниз окислительные свойства кислородсодержащих кислот, в которых атомы центрального элемента имеют одинаковую степень окисления, уменьшаются. Сильными окислителями являются азотная и концентрированная серная кислоты. Окислительные свойства проявляются тем сильнее, чем больше положительная степень окисления элемента в соединении. Сильные окислительные свойства проявляют перманганат калия и дихромат калия.

В главных подгруппах восстановительные свойства простых анионов увеличиваются сверху вниз. Сильными восстановителями являются HI, H2S, иодиды и сульфиды.



Назад






Полезная Информация
 |  Караоке  |  Сонник  |  Вебкамера на МКС  |  Гадания  |  Мировая статистика  |  Сейсмический монитор  |  Население Земли  |  Онлайн полеты самолётов  |  Телевидение  |  Поздравления  |  Нетрадиционная медицина  |  Журналы,газеты  |  Иллюзии  |  Выживание
 |  Омоложение  |  Блог Артема Драгунова  |  Анимация, картинки  |  Улыбнись
 |  Лунный календарь  |  Заговоры  |  Астрология, гороскопы  |  100 лучших фильмов  |  Игры  |  Очищение  |  Фильмы онлайн  | 


На главную Сделать стартовой Добавить в избранное Написать письмо
Copyright © priroda.inc.ru