*~* Основные понятия о химии *~*





ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ


Все химические вещества состоят из частиц, классификация которых в химии (и физике!) достаточно сложна; химические превращения связывают, прежде всего, с такими частицами, как атом, молекула, ядро, электрон, протон, нейтрон, атомные и молекулярные ионы, радикалы. 

Атом электронейтральная система взаимодействующих элементарных частиц, состоящая из ядра (образованного протонами и нейтронами) и электронов.

Электрон . Первые указания о сложном строении атома были получены при изучении процессов прохождения электрического тока через жидкости и газы. Опыты выдающегося английского ученого М. Фарадея в 30-х гг. XIX в. навели на мысль о том, что электричество существует в виде отдельных единичных зарядов.
Величины этих единичных зарядов электричества были определены в более поздних экспериментах по пропусканию электрического тока через газы (опыты с так называемыми катодными лучами). Было установлено, что катодные лучи — это поток отрицат ельно заряженных частиц, которые получили название электронов.

Химический элемент. Определенный вид атомов, характеризующийся одинаковым зарядом ядра, называется химическим элементом. Каждый элемент имеет свое название и свой символ, например элементы гелий Не, медь Сu, фосфор Р и т. д. (см. периодическую таблицу). 

Молекула. Следующей, более сложной после атома частицей может рассматриваться молекула.
Молекула — это электронейтральная наименьшая совокупность атомов, образующих определенную структуру посредством химических связей. Молекула — это наименьшая частица данного вещества, обладающая его химическими свойствами. Химические свойства молекулы определяются ее составом и химическим строением.


Химическая формул а . Наименование и символы элементов — химическая азбука, позволяющая описать состав любого вещества химической формулой.

Вещество . Молекулы могут содержать атомы только одного элемента, например молекула кислорода содержит два атома кислорода и описывается формулой О2, молекула озона состоит из трех атомов кислорода — О3, молекула белого фосфора — из четырех атомов фосфора Р4, молекула брома — из двух атомов Br2 и т. д.; такие вещества называют простыми веществами.
Вещества, молекулы которых состоят из атомов разных элементов, называют сложными веществами или химическими соединениями, например оксид водорода (вода) Н2О, азотная кислота HNO3, глюкоза С6Н12О6 и т. д. 

Относительная атомная масса . Относительной атомной массой элемента называют отношение абсолютной массы атома к 1/12 части абсолютной массы атома изотопа углерода 12С. Обозначают относительную атомную массу элемента символом Аr, где r - начальная буква английского слова relative (относительный). 

Относительная молекулярная масса. Относительной молекулярной массой Мr называют отношение абсолютной массы молекулы к 1/12 массы атома изотопа углерода 12С. Обратите внимание на то, что относительные массы по определению являются безразмерными величинами. 
Таким образом, мерой относительных атомных и молекулярных масс избрана 1/12 часть массы атома изотопа углерода 12С, которая называется атомной единицей массы (а.е.м.): 

Моль . В химии чрезвычайное значение имеет особая величина — количество вещества.
Количество вещества определяется числом структурных единиц (атомов, молекул, ионов или других частиц) этого вещества, оно обозначается обычно n и выражается в молях (моль). 
Моль — это единица количества вещества, содержащая столько же структурных единиц данного вещества, сколько атомов содержится в 12 г углерода, состоящего только из изотопа 12С.

Число Авогадро. Определение моля базируется на числе структурных единиц, содержащихся в 12 г углерода. Установлено, что данная масса углерода содержит 6,02? 1023 атомов углерода. Следовательно, любое вещество количеством 1 моль содержит 6,02? 1023 структурных единиц (атомов, молекул, ионов). 
Число частиц 6,02 ? 1023 называется числом Авогадро или постоянной Авогадро и обозначается NA: 

 NA = 6,02 ? 1023 моль-1. 

Молярная масса.Для удобства расчетов, проводимых на основании химических реакций и учитывающих количества исходных реагентов и продуктов взаимодействия в молях, вводится понятие молярной массы вещества.
 Молярная масса М вещества представляет собой отношение его массы к количеству вещества:
где т — масса в граммах, n — количество вещества в молях, М — молярная масса в г/моль — постоянная величина для каждого данного вещества. 
Значение молярной массы численно совпадает с относительной молекулярной массой вещества или относительной атомной массой элемента. 


Классификация химических веществ.Индивидуальные вещества, смеси, растворы. Все вещества подразделяются на смеси и чистые вещества. Смеси состоят из нескольких веществ, каждое из которых сохраняет свои индивидуальные свойства и может быть выделено в чистом виде. 
Смеси могут быть гомогенными (однородными) и гетерогенными (неоднородными). Примером гомогенной смеси могут служить растворы, гетерогенной — бетон, смесь сахара и соли и т.д. 

Для получения чистых химических используются различные химические и физические методы очистки. Однако на практике любое вещество содержит какое-то количество примесей. При высокой степени очистки содержание последних настолько мало, что практически не влияет на химические и физические свойства веществ. 

Химические вещества подразделяются на простые и сложные.

Простые вещества— это вещества, образованные из атомов одного элемента.
Например, простое вещество уголь образовано атомами элемента углерода, простое вещество железо — атомами элемента железа, простое вещество азот — атомами элемента азота. 
Понятие "простое вещество” нельзя отождествлять с понятием "химический элемент”. Простое вещество характеризуется определенной плотностью, растворимостью, температурами плавления и кипения и т.п. Эти свойства относятся к совокупности атомов и для разных простых веществ они различны. Химический элемент характеризуется определенным положительным зарядом ядра атома (порядковым номером), степенью окисления, изотопным составом и т.д. Свойства элементов относятся к его отдельным атомам.


Сложные вещества, или химические соединения, — это вещества, образованные атомами разных элементов.
Так, оксид меди (II) образован атомами элементов меди и кислорода, вода — атомами элементов водорода и кислорода.  
Сложные вещества состоят не из простых веществ, а из элементов. Например, вода состоит не из простых веществ водорода и кислорода, а из элементов водорода и кислорода. Названия элементов обычно совпадают с названиями соответствующих им простых веществ (исключения: углерод и одно из простых веществ кислорода — озон). 

Аллотропия.В настоящее время известно 110 элементов, а число образуемых ими простых веществ около 400. Такое различие объясняется способностью того или иного элемента существовать в виде различных простых веществ, отличающихся по свойствам. Это явление называется аллотропией, а образующиеся вещества — аллотропными видоизменениями или модификациями. Так, элемент кислород образует две аллотропные модификации — кислород и озон; элемент углерод — три: алмаз, графит и карбин; несколько модификаций образует элемент фосфор. Aллотропные формы элемента кислорода отличаются числом атомов в их молекулах. Аллотропные формы элемента углерода — алмаз, графит и карбин отличаются строением их кристаллических решеток. 
Таким образом, явление аллотропии вызывается двумя причинами: 1) различным числом атомов в молекуле (например, кислород O2 и озон О3) или 2) образованием различных кристаллических форм. 
Валентность элементов в соединениях. Современные представления о природе химической связи основаны на электронной (спиновой) теории валентности, в соответствии с которой атомы, образуя связи, стремятся к достижению наиболее устойчивой (т. е. имеющей наименьшую энергию) электронной конфигурации. При этом электроны, принимающие участие в образовании химических связей, называются валентными. 

Согласно спиновой теории, валентность атома определяется числом его неспаренных электронов, способных участвовать в образовании химических связей с другими атомами, поэтому понятно, что валентность всегда выражается небольшими целыми числами. 

Степень окисления.Для полярных соединений также часто используют понятие степени окисления, условно считая, что такие соединения состоят только из ионов. Так, в галогеноводородах и воде водород имеет формально положительную валентность, равную 1+, галогены — формально отрицательную валентность 1-, кислород — отрицательную валентность 2-, как это обозначено в формулах Н+F-, Н+Сl-, Н+2О2-. 
Понятие степени окисления было введено в предположении о полном смещении пар электронов к тому или другому атому (показывая при этом заряд ионов, образующих ионное соединение). Поэтому в полярных соединениях степень окисления означает число электронов, лишь смещенных от данного атома к атому, связанному с ним.
Совсем формальное понятие "степень окисления” используется при рассмотрении ковалентного соединения, поскольку степень окисления — это условный заряд атома в молекуле, вычисленный исходя из предположения, что молекула состоит только из ионов. В действительности никаких ионов в ковалентных соединениях нет.



Химия — одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы), образуемые ими простые и сложные вещества (молекулы), их превращения и законы, которым подчиняются эти превращения. По определению Д. И. Менделеева (1871), "химию в современном ее состоянии можно... назвать учением об элементах". [Происхождение слова "химия" выяснено не окончательно. Многие исследователи полагают, что оно происходит от старинного наименования Египта — Хемия (греч. Chemia, встречается у Плутарха), которое производится от "хем" или "хаме" — чёрный и означает "наука чёрной земли" (Египта), "египетская наука".]

Современная Х. тесно связана как с др. науками, так и со всеми отраслями народного хозяйства. Качественная особенность химической формы движения материи и её переходов в др. формы движения обусловливает разносторонность химической науки и её связей с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение Х. с др. науками порождает специфические области взаимного их проникновения. Так, области перехода между Х. и физикой представлены физической химией и химической физикой. Между Х. и биологией, Х. и геологией возникли особые пограничные области — геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы Х. формулируются на математическом языке, и теоретическая Х. не может развиваться без математики. Х. оказывала и оказывает влияние на развитие философии и сама испытывала и испытывает её влияние.
Исторически сложились два основных раздела Х.: неорганическая химия, изучающая в первую очередь химические элементы и образуемые ими простые и сложные вещества (кроме соединений углерода), и органическая химия, предметом изучения которой являются соединения углерода с др. элементами (органические вещества). До конца 18 в. термины "неорганическая Х." и "органическая Х." указывали лишь на то, из какого "царства" природы (минерального, растительного или животного) получались те или иные соединения. Начиная с 19 в. эти термины стали указывать на присутствие или отсутствие углерода в данном веществе. Затем они приобрели новое, более широкое значение. Неорганическая Х. соприкасается прежде всего с геохимией и далее с минералогией и геологией, т. е. с науками о неорганической природе. Органическая Х. представляет отрасль Х., которая изучает разнообразные соединения углерода вплоть до сложнейших биополимерных веществ; через органическую и биоорганическую химию Х. граничит с биохимией и далее с биологией, т. е. с совокупностью наук о живой природе. На стыке между неорганической и органической химией находится область элементоорганических соединений.

В Х. постепенно сформировались представления о структурных уровнях организации вещества. Усложнение вещества, начиная от низшего, атомарного, проходит ступени молекулярных, макромолекулярных, или высокомолекулярных, соединений (полимер), затем межмолекулярных (комплекс, клатрат, катенан), наконец, многообразных макроструктур (кристалл, мицелла) вплоть до неопределённых нестехиометрических образований. Постепенно сложились и обособились соответствующие дисциплины: Х. комплексных соединений, полимеров, кристаллохимия, учения о дисперсных системах и поверхностных явлениях, сплавах и др.




Физическая химия, наука, объясняющая химические явления и устанавливающая их закономерности на основе общих принципов физики. Главными разделами Ф. х. являются: термодинамика химическая, кинетика химическая, учения о катализе, поверхностных явлениях, растворах, квантовая химия и учение о строении и свойствах молекул, ионов, радикалов. Ф. х. в качестве своих, в значительной мере самостоятельных, разделов включает также коллоидную химию, электрохимию, фотохимию, кристаллохимию, радиационную химию, физико-химический анализ и др.
Название науки Ф. х., её предмет и задачи были впервые сформулированы М. В. Ломоносовым, который в 1752–53 читал для студентов курс "Введение в истинную физическую химию". Им был установлен один из основных законов, на котором базируется Ф. х., – закон постоянства массы при химических превращениях. В 1840 Г. И. Гессом был открыт закон постоянства сумм тепла при химических превращениях, также явившийся одним из фундаментальных законов Ф. х. Существенный вклад в развитие Ф. х. в середине 19 в. был внесён П. Бертло и Х. Томсеном благодаря их фундаментальным термохимическим исследованиям, введению представлений о теплотах реакции как мере химического сродства реагирующих веществ, установлению связи между теплотами образования и составом веществ. Первую кафедру Ф. х. организовал в 1887 в Лейпцигском университете В. Оствальд, он же основал первый физико-химический журнал.

Выделение Ф. х. в самостоятельную отрасль науки произошло лишь в конце 19 в. Этому способствовал общий рост разнообразных химических производств и создание химической промышленности, выдвинувшей множество проблем, для успешного разрешения которых было недостаточно эмпирических правил и знания качественных соотношений.



Химические реакции


Химическая реакция — превращение одного или нескольких исходных веществ (реагентов) в отличающиеся от них по химическому составу или строению вещества (продукты реакции). В отличие от ядерных реакций, при химических реакциях ядра атомов не меняются, в частности не изменяется их общее число, изотопный состав химических элементов, при этом происходит перераспределение электронов и ядер и образуются новые химические вещества.

Химические реакции происходят при смешении или физическом контакте реагентов самопроизвольно, при нагревании, участии катализаторов (катализ), действии света (фотохимические реакции), электрического тока (электродные процессы), ионизирующих излучений (радиационно-химические реакции), механического воздействия (механохимические реакции), в низкотемпературной плазме (плазмохимические реакции) и т. п. Взаимодействие молекул между собой происходит по цепному маршруту: ассоциация – электронная изомеризация – диссоциация, в котором активн
ыми частицами являются радикалы,ионы, координационно-ненасыщенные соединения. Скорость химической реакции определяется концентрацией активных частиц и разницей между энергиями связи разрываемой и образуемой.


Строение атома


Ядро атома и радиоактивные превращения. В настоящее время в ядре атома открыто большое число элементарных частиц. Важнейшими из них являются протоны (символ p) и нейтроны (символ n). Обе эти частицы рассматриваются как два различных состояния ядерной частицы нуклона. Элементарные частицы характеризуются определенной массой и зарядом. Протон обладает массой 1,0073 а.е.м. и зарядом +1. Масса нейтрона равна 1,0087 а.е.м., а его заряд — нулю (частица электрически нейтральна). Можно сказать, что массы протона и нейтрона почти одинаковы. Вскоре после открытия нейтрона, была создана протонно-нейтронная теорию строения ядра. Согласно этой теории ядра всех атомов, кроме ядра атома водорода, состоят из Z протонов (А — Z) нейтронов, где Z — порядковый номер элемента, А — массовое число.

Массовое число А указывает суммарное число протонов Z и нейтронов N в ядре атома, т.е. 

A =  Z + N.
Силы, удерживающие протоны и нейтроны в ядре, называются ядерными. Это чрезвычайно большие силы, действующие на очень коротких расстояниях (порядка 10-15 м) и превосходящие силы отталкивания. Природу этих сил изучает ядерная физика. В ядре сосредоточена почти вся масса атома. Массой электронов по сравнению с массой ядра можно практически пренебречь. Свойства ядра определяются главным образом числом протонов и нейтронов, т.е. составом ядра. Состав ядер атомов различных химических элементов не одинаков, а потому элементы отличаются по атомной массе. И поскольку в состав ядра входят протоны, ядро заряжено положительно. Так как заряд ядра численно равен порядковому номеру элемента Z, то он определяет число электронов в электронной оболочке атома и ее строение, а тем самым и свойства химического элемента. Поэтому положительный заряд ядра, а не атомная масса является главной характеристикой атома, а значит, и элемента.  
Наряду с химическими реакциями, в которых принимают участие только электроны, существуют различные превращения, в которых изменению подвергаются ядра атомов (ядерные реакции). 

Изотопы. Исследования показали, что в природе существуют атомы одного и того же элемента с разной массой. Так, встречаются атомы хлора с массой 35 и 37. Ядра этих атомов содержат одинаковое число протонов, но разное число нейтронов.

Aтомы одного и того же элемента, имеющие разную массу (массовое число), называют изотопами.
Каждый изотоп характеризуется двумя величинами: массовым числом (проставляется вверху слева от химического знака) и порядковым номером (проставляется внизу слева от химического знака) и обозначается символом соответствующего элемента. Например, изотоп углерода с массовым числом 12 записывается так: 126С, или 12С, или словами: "углерод-12”. Эта форма записи распространена и на элементарные частицы: электрон 01е, нейтрон 10n, протон 11p или 1 1Н, нейтрино 00n . Изотопы известны для всех химических элементов.

Обычно изотопы различных элементов не имеют специальных названий. Единственным исключением является водород, изотопы которого имеют специальные химические символы и названия: 1H — протий, 2D — дейтерий, 3T — тритий. Это связано с тем, что относительное отличие масс изотопов для водорода является максимальным среди всех химических элементов. 
Атомная масса элемента равна среднему значению из масс всех его природных изотопов с учетом их распространенности. 
Так, например, природный хлор состоит из 75,4% изотопа с массовым числом 35 и из 24,6% изотопа с массовым числом 37; средняя атомная масса хлора 35,453. Средняя атомная масса природного лития, содержащего 92,7% 73Li и 7,3% 63Li равна 6,94 и т.д. Атомные массы элементов, приводимые в периодической системе Д. И. Менделеева, есть средние массовые числа природных смесей изотопов. Это одна из причин, почему они отличаются от целочисленные значений. Наряду с термином "изотопы” используется термин "нуклид”. Нуклид — это атом со строго определенным значением массового числа, т.е. с фиксированным значением числа протонов и нейтронов в ядре. Радиоактивный нуклид сокращенно называют радионуклид. Термин "изотопы” следует применять только для обозначения стабильных и радиоактивных нуклидов одного элемента. 

Устойчивые и неустойчивые изотопы.
Все изотопы подразделяются на стабильные и радиоактивные. Стабильные изотопы не подвергаются радиоактивному распаду, поэтому они и сохраняются в природных условиях. Примерами стабильных изотопов являются 16О, 12С, 19F. Большинство природных элементов состоит из смеси двух или большего числа стабильных изотопов. Из всех элементов наибольшее число стабильных изотопов имеет олово (10 изотопов). В редких случаях, например у алюминия, в природе встречается только один стабильный изотоп, а остальные изотопы неустойчивы. 

Радиоактивные изотопы подразделяются, в свою очередь, на естественные и искусственные — и те и другие самопроизвольно распадаются, испуская при этом a - или b -частипы до тех пор, пока не образуется стабильный изотоп. Химические свойства всех изотопов в основном одинаковы. Эти свойства определяются главным образом зарядом ядра, а не его массой. 
С помощью ядерных реакций получают изотопы, обладающие радиоактивностью (радиоактивные изотопы). Все они неустойчивы и в результате радиоактивного распада превращаются в изотопы других элементов. 
Радиоактивные изотопы получены для всех химических элементов. Их известно около 1500. Элементы, состоящие только из радиоактивных изотопов, называются радиоактивными. Это элементы с Z = 43, 61 и 84 - 107. 
Стабильных (нерадиоактивных) изотопов известно около 300. Из них состоит большинство химических элементов периодической системы элементов Д.И. Менделеева. У некоторых элементов наряду со стабильными имеются и долгоживущие радиоактивные изотопы. Это 4019K, 8737Rb, 11549In и др. 
По химическим свойствам радиоактивные изотопы почти не отличаются от стабильных. Поэтому они служат в качестве "меченых” атомов, позволяющих по измерению их радиоактивности следить за поведением всех атомов данного элемента и за их передвижением. Радиоактивные изотопы широко применяются в научных исследованиях, в промышленности, сельском хозяйстве, медицине, биологии и химии. В настоящее время их получают в больших количествах. 

Скорость радиоактивного распада
. Период полураспада. Скорости распада радиоактивных элементов сильно отличаются от одного элемента к другому и не зависят от внешних условий, таких, например, как температура (в этом состоит важное отличие ядерных реакций от обычных химических превращений). Каждый радиоактивный элемент характеризуется периодом полураспада t 1/2, т. е. временем, за которое самопроизвольно распадается половина атомов исходного вещества. Для разных элементов период полураспада имеет сильно отличающиеся значения. Так, для урана 238U период полураспада t 1/2 = 4,5? 109 лет. Именно поэтому активность урана в течение нескольких лет заметно не меняется. Для радия 226Ra период полураспада t 1/2 = 1600 лет, поэтому и активность радия больше, чем урана. Ясно, что чем меньше период полураспада, тем быстрее протекает радиоактивный распад. Для разных элементов период полураспада может изменяться от миллионных долей секунды до миллиардов лет.

В ядерных реакциях (в случае естественного или искусственного превращения элементов) сумма атомных масс (сумма индексов слева вверху) реагентов и продуктов всегда одинакова. Это относится и к зарядам ядер (индексы слева внизу, которые часто опускаются).
В 1930 г. был создан первый в мире циклотрон (ускоритель элементарных частиц — "снарядов” для бомбардировки ядер атомов), после чего было открыто и изучено множество разнообразных ядерных реакций. В настоящее время специальная область химии, ядерная химия, занимается изучением превращений элементов. 
Особую важность представлял синтез неизвестных ранее элементов: технеция, франция, астата и др., а также всех трансурановых элементов (элементов, порядковый номер которых превышает 92). В настоящее время получено 17 трансурановых элементов (от Z = 93 до Z = 109 включительно). Работы в этой области проводятся в Объединенном институте ядерных исследований в г. Дубне. Там впервые были синтезированы элементы с порядковыми номерами 102, 103, 104, 105, 106, 107. Ведутся работы по синтезу элементов с более тяжелыми ядрами.


Химическая связь


Согласно теории химической связи, наибольшей устойчивостью обладают внешние оболочки из двух или восьми электронов (электронные группировки благородных газов). Атомы, имеющие на внешней оболочке менее восьми (или иногда двух) электронов, стремятся приобрести структуру благородных газов. Такая закономерность позволила В. Косселю и Г. Льюису сформулировать положение, которое является основным при рассмотрении условий образования молекулы: "При образовании молекулы в ходе химической реакции атомы стремятся приобрести устойчивую восьмиэлектронную (октет) или двухэлектронную (дублет) оболочки”. 
Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к электронным оболочкам. Таковы водородная и металлическая связи.  
 Валентность элементов в соединениях. Современные представления о природе химической связи основаны на электронной (спиновой) теории валентности (наибольший вклад в развитие этой теории внесли Г. Льюис и В. Коссель), в соответствии с которой атомы, образуя связи, стремятся к достижению наиболее устойчивой (т. е. имеющей наименьшую энергию) электронной конфигурации. При этом электроны, принимающие участие в образовании химических связей, называются валентными. 
Согласно спиновой теории, валентность атома определяется числом его неспаренных электронов, способных участвовать в образовании химических связей с другими атомами, поэтому валентность всегда выражается небольшими целыми числами.

Энергия связи — это работа, необходимая для разрыва химической связи во всех молекулах, составляющих один моль вещества. Чаще всего энергию связи измеряют в кДж/моль. Наиболее прочными являются ионные и ковалентные связи, энергии этих связей составляют величины от десятков до сотен кДж/моль. Металлическая связь, как правило, несколько слабее ионных и ковалентных связей, но величины энергий связи в металлах близки к значениям энергии ионных и ковалентных связей. Об этом свидетельствуют, в частности, высокие температуры кипения металлов, например 357 °С (Hg), 880 °С (Na), 3000 ° С (Fe) и т. д. Энергии водородных связей очень небольшие по сравнению с энергией межатомных связей. Так, энергия водородной связи составляет обычно величину 20—40 кДж/моль, тогда как энергия ковалентных связей может достигать несколько сотен кДж/моль.

Ионная связь. Ионная связь — это электростатическое взаимодействие между ионами с зарядами противоположного знака.Коссель предположил, что ионная связь образуется в результате полного переноса одного или нескольких электронов от одного атома к другому. Такой тип связи возможен только между атомами, которые резко отличаются по свойствам. Например, элементы I и II групп периодической системы (типичные металлы) непосредственно соединяются с элементами VI и VII групп (типичными неметаллами). В качестве примеров веществ с ионной связью можно назвать MgS, NaCl, А2O3. Такие вещества при обычных условиях являются твердыми, имеют высокие температуры плавления и кипения, их расплавы и растворы проводят электрический ток. Валентность элементов в соединениях с ионными связями очень часто характеризуют степенью окисления, которая, в свою очередь, соответствует величине заряда иона элемента в данном соединении. Использование понятия степени окисления для атомов элементов, образующих другие виды химической связи, не всегда корректно и требует большой осторожности. 


Ковалентная связь. Известно, что неметаллы взаимодействуют друг с другом. Рассмотрим образование простейшей молекулы Н2. 

Представим себе, что мы имеем два отдельных изолированных атома водорода Н' и Н". При сближении этих атомов между собой силы электростатического взаимодействия — силы притяжения электрона атома Н' к ядру атома Н" и электрона атома Н" к ядру атома Н' — будут возрастать: атомы начнут притягиваться друг к другу. Однако одновременно будут возрастать и силы отталкивания между одноименно заряженными ядрами атомов и между электронами этих атомов. Это приведет к тому, что атомы смогут сблизиться между собой настолько, что силы притяжения будут полностью уравновешены силами отталкивания. Расчет этого расстояния (длины ковалентной связи) показывает, что атомы сблизятся настолько, что электронные оболочки, участвующие в образовании связи, начнут перекрываться между собой. Это, в свою очередь, приведет к тому, что электрон, двигавшийся ранее в поле притяжения только одного ядра, получит возможность перемещаться и в поле притяжения другого ядра. Таким образом, в какой-то момент времени то вокруг одного, то вокруг другого атома будет возникать заполненная оболочка благородного газа (такой процесс может происходить только с электронами, обладающими противоположно направленными проекциями спина). При этом возникает общая пара электронов, одновременно принадлежащая обоим атомам.
Область перекрытия между электронными оболочками имеет повышенную электронную плотность, которая уменьшает отталкивание между ядрами и способствует образованию ковалентной связи. 
 Таким образом, связь, осуществляемая за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам, называется ковалентной.

Электроотрицательность — это способность атома притягивать к себе валентные электроны других атомов. Электроотрицательность (ЭО) не может быть измерена и выражена в единицах каких-либо физических величин, поэтому для количественного определения ЭО предложены несколько шкал, наибольшее признание и распространение из которых получила шкала относительных ЭО, разработанная Л. Полингом.
Степень окисления в ковалентных соединениях. Для полярных соединений также часто используют понятие степени окисления, условно считая, что такие соединения состоят только из ионов. Так, в галогеноводородах и воде водород имеет формально положительную валентность, равную 1+, галогены — формально отрицательную валентность 1-, кислород — отрицательную валентность 2-: H+F- , H+Cl- , H2+O2- .


Агрегатные состояния вещества и переходы между ними


Агрегатные состояния вещества. Вследствие того, что частицы вещества взаимодействуют между собой, вещества имеют сложное строение. В зависимости от характера взаимодействия частиц, образующих вещество, различают четыре агрегатных состояния: твердое, жидкое, газообразное и плазменное. 

Если вещество находится при очень низкой температуре, частицы его обычно образуют правильную геометрическую структуру, в таком случае энергии связей частиц больше энергий тепловых колебаний, которые не нарушают образовавшуюся структуру, — вещество существует в твердом состоянии. 
При повышении температуры энергия тепловых колебаний частиц возрастает, и для каждого вещества имеется температура, начиная с которой энергия тепловых колебаний превышает энергию связей. Связи между частицами постоянно разрушаются и вновь образуются. Частицы могут совершать различные движения (колебательные, вращательные и т. д.), смещаясь относительно друг друга. Однако они еще остаются в контакте, хотя правильная геометрическая структура частиц нарушается — вещество существует в жидком состоянии. 
При дальнейшем повышении температуры тепловые колебания увеличиваются, в результате частицы становятся практически не связанными друг с другом. Вещество переходит в газообразное состояние. В "идеальном” газе частицы свободно перемещаются во всех направлениях. 
Следовательно, при повышении температуры вещества переходят из упорядоченного состояния (твердое) в неупорядоченное состояние (газообразное); жидкое состояние является промежуточным.

Четвертым состоянием вещества является плазма, которая представляет собой газ, состоящий из смеси нейтральных и ионизованных молекул и электронов. Изучением плазмы занимается специальная область химии — плазмохимия, однако, химикам все же намного больше приходится иметь дело с веществами в твердом, жидком и газообразном состояниях. 
Наиболее характерным свойством газов является их сжимаемость и способность расширяться. Газы не имеют собственной формы и расширяются до тех пор, пока не заполнят весь сосуд, принимая его форму. По той же причине газы не имеют собственного объема, объем газа определяется объемом сосуда, в котором он находится. Газ оказывает на стенки сосуда постоянное давление, одинаковое во всех направлениях. Характерным свойством газов является также то, что они способны смешиваться друг с другом в любых соотношениях. 

Жидкости.В жидком состоянии (при обычных условиях) могут находиться металлические (например, ртуть) или ковалентные соединения (вода, бензол, этиловый спирт и т. д.). Подобно газам, жидкости не имеют собственной формы и принимают форму того сосуда, в котором они находятся, однако, в отличие от газов, жидкости имеют вполне определенный собственный объем. Сжимаемость жидкостей, в отличие от газов, очень мала, и для того, чтобы заметно сжать жидкость, необходимо очень высокое давление. 

Твердые вещества.В твердом состоянии могут находиться соединения с металлическими, ионными или ковалентными связями. Твердые тела отличаются от газов и жидкостей наличием собственной формы и собственного объема. Даже при очень высоких давлениях сжимаемость твердых тел чрезвычайно мала. 

Газы. Газовые законы. Если энергия притяжения между молекулами меньше их кинетической энергии, то совокупность таких молекул будет существовать в виде газа. Индивидуальное вещество в газообразном состоянии характеризуется следующими величинами: Р — давлением; Т или t — температурой, измеряемой в градусах Кельвина или Цельсия; V — объемом; m — массой всего газа; М — молярной массой. Газовые законы устанавливают взаимосвязь между этими величинами. При этом используется простейшая модель газообразного состояния веществ — идеальный газ, которая основана на следующих допущениях: 1) между частицами газа отсутствуют силы взаимодействия; 2) сами частицы представляют собой материальные точки.


Растворы электролитов


Электролиты. Известно, что существуют две основные причины прохождения электрического тока через проводники: либо за счет движения электронов в электрическом поле, либо за счет движения ионов. Электронная проводимость присуща, прежде всего, металлам.
Ионная проводимость присуща многим химическим соединениям, обладающим ионным строением, например солям в твердом или расплавленном состояниях, а также многим водным и неводным растворам. В связи с этим все вещества принято условно делить по их поведению в растворах на две категории: а) вещества, растворы которых обладают ионной проводимостью (электролиты); б) вещества, растворы которых не обладают ионной проводимостью (неэлектролиты). К электролитам относится большинство неорганических кислот, оснований и солей. К неэлектролитам относятся многие органические соединения, например спирты, углеводы. 

Электролитическая диссоциация. Кроме хорошей электропроводности, растворы электролитов обладают более низкими значениями давления пара растворителя и температуры плавления и более высокими температурами кипения по сравнению с соответствующими значениями для чистого растворителя или для раствора неэлектролита в этом же растворителе. Для объяснения этих свойств шведский ученый С. Аррениус в 1887 г. предложил теорию электролитической диссоциации. 
Под электролитической диссоциацией понимается распад молекул электролита в растворе с образованием положительно и отрицательно заряженных ионов — катионов и анионов.  
Процесс диссоциации во всех случаях является обратимым, поэтому при написании уравнений реакции диссоциации необходимо применять знак обратимости « . Различные электролиты, согласно теории Аррениуса, диссоциируют на ионы в различной степени. Полнота распада зависит от природы электролита, его концентрации, природы растворителя, температуры. 
Сильные и слабые электролиты. В зависимости от степени диссоциации различают электролиты сильные и слабые. Электролиты со степенью диссоциации больше 30% обычно называют сильными, со степенью диссоциации от 3 до 30% — средними, менее 3% — слабыми электролитами.
К сильным электролитам относятся почти все соли, некоторые кислоты (НСl, HBr, HI, НNО3, НсlO4, Н2SO4(разб.)) и некоторые основания (LiОН, NaOH, КОН, Са(ОН)2, Sr(OH)2, Ва(ОН)2). К слабым электролитам относится большинство кислот (особенно органических) и оснований. 
 Степень диссоциации как сильных, так и слабых электролитов зависит от концентрации раствора (степень диссоциации тем выше, чем более разбавлен раствор). 
 Константа диссоциации. Более точной характеристикой диссоциации электролита является константа диссоциации, которая от концентрации раствора не зависит. 
Выражение для константы диссоциации можно получить, если записать уравнение реакции диссоциации электролита АК в общем виде:
 Основные классы неорганических веществ: 
а) Оксиды. Оксидами называются сложные вещества, состоящие из двух элементов, один из которых кислород.
Почти все химические элементы образуют оксиды. До настоящего времени еще не получены оксиды трех элементов — благородных газов гелия, неона и аргона. 
 Согласно международной номенклатуре названия оксидов образуют из латинского корня названия элемента с большей относительной электроотрицательностью с окончанием -ид и русского названия элемента с меньшей относительной электроотрицательностью в родительном падеже. Если же элемент образует несколько оксидов, то в их названиях указывается степень окисления элемента римской цифрой в скобках сразу после названия. Например, Н2О — оксид водорода (вода), FeО — оксид железа (II), Fe2O3 — оксид железа (III), Р2O3 — оксид фосфора (III), Р2О5 — оксид фосфора (V), P4O6 — гексаоксид тетра-фосфора, Р4O10 — декаоксид тетрафосфора, Сu2О — оксид меди (I) или оксид димеди. 
Особую группу кислородных соединений элементов составляют пероксиды. Обычно их рассматривают как соли пероксида водорода Н2O2, проявляющего слабые кислотные свойства. У пероксидов атомы кислорода химически связаны не только с атомами других элементов, но и между собой (образуют пероксидную группу —О—О—. Например, пероксид натрия Na2О2 (пероксо- — название группы —О—О—). Надо уметь правильно определять степень окисления элементов в пероксидах. Так, в пероксиде бария ВаO2 степень окисления бария равна +2, а кислорода -1.
По химическим свойствам оксиды делятся на три группы: основные, кислотные и амфотерные. 

Основные оксиды. Основными называются такие оксиды, которым соответствуют основания. Например, Nа2O, СаО, FеО, NiO являются основными оксидами, так как им соответствуют основания NаОН, Са(ОН)2, Fе(ОН)2, Ni(ОН)2. Некоторые основные оксиды при взаимодействии с водой образуют основания,Основные классы неорганических веществ. 
 Особую группу кислородных соединений элементов составляют пероксиды. Обычно их рассматривают как соли пероксида водорода Н2O2, проявляющего слабые кислотные свойства. У пероксидов атомы кислорода химически связаны не только с атомами других элементов, но и между собой (образуют пероксидную группу —О—О—. Например, пероксид натрия Na2О2 (пероксо- — название группы —О—О—). Надо уметь правильно определять степень окисления элементов в пероксидах. Так, в пероксиде бария ВаO2 степень окисления бария равна +2, а кислорода -1. 
По химическим свойствам оксиды делятся на три группы: основные, кислотные и амфотерные.
 
б) Кислоты. Кислотой называется соединение, образующее при диссоциации в водном растворе из положительных ионов только ионы водорода Н+. В соответствии с этими определениями к кислотам относятся, например, НСl, H2SO4, HNO3, H2S. 
Числом ионов водорода, образуемых каждой молекулой кислоты при диссоциации, определяется заряд кислотного остатка (аниона). Соляная и азотная кислоты образуют только однозарядные кислотные остатки (Сl- ,NО3-); молекула серной кислоты (Н2SO4 может образовать два кислотных остатка: однозарядный (НSO4-) и двухзарядный (SO42-); молекула фосфорной кислоты может дать три кислотных остатка: однозарядный, двухзарядный и трехзарядный (Н2РО4-, НРО42- и РО43-).
Различают кислородные и бескислородные кислоты. Как показывает само название, первые содержат кислород (например Н2SO4, НNO3, Н3РО4), вторые его не содержат (например, НСl, НВr, НI, H2S). 
 Названия кислородных кислот производятся от названия неметалла с прибавлением окончаний -ная, -вая, если степень окисления его соответствует номеру группы. По мере понижения степени окисления суффиксы меняются в следующем порядке: -оватая, -истая, -оватистая. 
 Если элемент в одной и той же степени окисления образует несколько кислородсодержащих кислот, то к названию кислоты с меньшим содержанием кислородных атомов добавляется префикс "мета”, при наибольшем числе — префикс "орто”. 
 Названия бескислородных кислот производятся от названия неметалла с окончанием -о и прибавлением слова водородная. 

в)
Основания. Основанием называется соединение, образующее при диссоциации в водном растворе из отрицательных ионов только гидроксид-ионы ОН-  В соответствии с этими определениями к основаниям относятся, например, NaOH, Са(ОН)2, NH4OH.

Амфотерные гидроксиды. Амфотерными называются такие гидроксиды, которые при диссоциации образуют одновременно и катионы водорода Н+, и гидроксид-ионы ОН-. Такими являются Аl(ОН)3, Zn(ОН)2, Сr(ОН)3, Ве(ОН)2, Gе(ОН)2, Sn(ОН)4, Рb(ОН)2 и др. 

г) Cоли. Солями называются соединения, образующие при диссоциации в водном растворе положительно заряженные ионы металлов и отрицательно заряженные ионы кислотных остатков, а иногда, кроме них, ионы водорода и гидроксид-ионы.
Реакция среды в растворах подобных солей зависит от относительной силы кислоты и основания. Другими словами, водные растворы таких солей могут иметь нейтральную, кислую или щелочную реакцию в зависимости от констант диссоциации образующихся кислот и оснований.
Так, при гидролизе СН3СООNН4 реакция раствора будет слабощелочной, поскольку константа диссоциации гидроксида аммония (К = 6,3? 10- 5) больше константы диссоциации уксусной кислоты (К = 1,75? 10- 5). 
Протонные кислоты. Электролитическая диссоциация явилась основой успешного развития теории растворов и изучения процессов, протекающих в них. В этом заключается ее большое значение в химии. Однако эта теория не объясняет процессов, протекающих в неводных растворах. Так, например, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы NН4+ и Сl- ), то в жидком аммиаке он проявляет свойства кислоты, — растворяет металлы с выделением водорода. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте. Эти факты не согласуются с теорией электролитической диссоциации. Их объясняет протолитическая теория кислот и оснований, предложенная в 1923 г. независимо датским ученым Бренстедом и английским ученым Лоури. Согласно этой теории кислотами являются вещества, молекулы или ионы, отщепляющие при данной реакции протоны. Основаниями являются вещества, молекулы или ионы, присоединяющие протоны. Как те, так и другие получили общее название протолитов.
Кислоты Льюиса. Еще более общее определение кислот и оснований предложил Г. Льюис. Он предположил, что кислотно-основные взаимодействия совсем необязательно происходят с переносом протона. В определении кислот и оснований по Льюису основная роль отводится участию электронных пар в химическом взаимодействии.
Катионы, анионы или нейтральные молекулы, способные принять одну или несколько пар электронов, называют кислотами Льюиса. 
Например, фторид алюминия АlF3 — кислота, способная принимать электронную пару при взаимодействии с аммиаком: 
AlF3 + : NH3 « [AlF3]: [NH3]
Катионы, анионы или нейтральные молекулы, способные отдавать электронные пары, называют основаниями Льюиса.  
Так, согласно определению, аммиак является основанием Льюиса в реакции



Окислительно-восстановительные реакции


Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.
Окисление — это процесс отдачи электронов атомом, молекулой или ионом. Если атом отдает свои электроны, то он приобретает положительный заряд. 

Восстановление — это процесс присоединения электронов атомом, молекулой или ионом. Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл - раствор. Такие пары называют полуэлементами. Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода 1 моль/л и омываемой струёй газообразного водорода под давлением 105 Па, при температуре 25 °С. Ряд стандартных электродных потенциалов. Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла, обозначаемый обычно как Е°. Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак "-”, а знак "+” имеют стандартные потенциалы электродов, являющихся окислителями.


Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов:

 
Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au. К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

 Ряд напряжений характеризует химические свойства металлов: 


1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т. е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.
Как и в случае определения значения Е° металлов, значения Е° неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л. 
 Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция? 
Количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Электролиз растворов. Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

 тоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является "восстановителем”. На аноде происходит отдача электронов анионами, поэтому анод является "окислителем”.
При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.
При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:

на аноде — окисление анионов и гидроксид-ионов,

на катоде — восстановление катионов и ионов водорода. 

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются: 

на аноде — окисление анионов и гидроксид-ионов, анодное растворение металла — материала анода; 
на катоде
— восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода




В содержание


 |  Анимация, картинки  |  Астрология, гороскопы  |  Аудиокниги  |  Вебкамеры России  |  Вебкамера на МКС  |  Выживание  |  Гороскопы  |  Заговоры  |  Иллюзии  |  Игры  |  Очищение  |  Календарь  |  Конвертер валют Мира  |  Лунный календарь  |  Мировая пресса  |  Мировая статистика  |  Население Земли  |  Народная медицина  |  Нетрадиционная медицина  |  Новости в России и Мире  |  Онлайн полеты самолётов  |  Омоложение  |  Очищение  |  Погода в России и Мире.  |  Поздравления  |  Прогнозы по дате рождения.  |  Сейсмический монитор  |  Сонник.  |  Страны Мира.  |  Телевидение  |  100 лучших фильмов  |  Улыбнись  |  Фильмотека  |  Ретро музыка  |  Ретро фильмы  |  Радио онлайн  |  Мини TV  |  Лунный день  |  Вечный календарь  | 

Copyright © http://priroda.inc.ru/