Система мышц человека Анатомия, строение и функции






Передвижение животного, перемещение частей его тела относительно друг друга, работа внутренних органов, акты дыхания, кровообращения, пищеварения, выделения осуществляются благодаря деятельности различных групп мышц.

У высших животных имеются три типа мышц: поперечнополосатые скелетные (произвольные), поперечнополосатые сердечные (непроизвольные), гладкие мышцы внутренних органов, сосудов и кожи (непроизвольные).

Отдельно рассматриваются специализированные сократительные образования - миоэпителиальные клетки, мышцы зрачка и цилиарного тела глаза.

Помимо свойств возбудимости и проводимости, мышцы обладают сократимостью, т. е. способностью укорачиваться или изменять степень напряжения при возбуждении. Функция сокращения возможна благодаря наличию в мышечной ткани специальных сократимых структур.

УЛЬТРАСТРУКТУРА И БИОХИМИЧЕСКИЙ СОСТАВ МЫШЦ

Скелетные мышцы. На поперечном сечении продольноволокнистой мышцы видно, что она состоит из первичных пучков, содержащих 20 - 60 волокон. Каждый пучок отделен соединительно тканной оболочкой - перимизиумом, а каждое волокно - эндомизиумом. В мышце животных насчитывается от нескольких сот до нескольких сот тысяч волокон с диаметром от 20 до 100 мкм и длиной до 12 - 16 см.

Отдельное волокно покрыто истинной клеточной оболочкой - сарколеммой. Сразу под ней, примерно через каждые 5 мкм по длине, расположены ядра. Волокна имеют характерную поперечную исчерченность, котораяобусловлена чередованием оптически более и менее плотных участков.

Волокно образовано множеством (1000 - 2000 и более) плотно упако ванных миофибрилл (диаметр 0,5 - 2 мкм), тянущихся из конца в конец. Между миофибриллами рядами расположены митохондрии, где происходят процессы окислительного фосфорилирования, необходимые для снабжения мышцы энергией. Под световым микроскопом миофибриллы представляют образования, состоящие из правильно чередующихся между собой темных и светлых дисков.Диски А называются анизотропными (обладают двойным лучепреломлением), диски И - изотропными (почти не обладают двойным лучепреломлением). Длина А-дисков постоянна, длина И-дисков зависит от стадии сокращения мышечного волокна. В середине каждого изотропного диска находится Х-полоска, в середине анизотропного диска - менее выраженная М-полоска.

За счет чередования изотронных и анизотропных сегментов каждая миофибрилла имеет поперечную исчерченность. Упорядоченное же расположение миофибрилл в волокне придает такую же исчерченность волокну в целом.

Электронная микроскопия показала, что каждая миофибрилла состоит из параллельно лежащих нитей, или протофибрилл (филаментов) разной толщины и разного химического состава. В одиночной миофибрилле насчитывае.тся 2000 - 2500 протофибрилл. Тонкие протофибриллы имеют поперечник 5 - 8 нм и длину 1 - 1,2 мкм, толстые - соответственно 10 - 15 нм и 1,5 мкм.

Толстые протофибриллы, содержащие молекулы белка миозина, образуют анизотропные диски. На уровне полоски М миозиновые нити связаны тончайшими поперечными соединениями. Тонкие протофибриллы, состоящие в основном из белка актина, образуют изотропные диски.

Нити актина прикреплены к полоске Х, пересекая ее в обоих направле ниях; они занимают не только область И-диска, но и заходят в промежутки между нитями миозина в области А-диска. В этих участках нити актина и миозина связаны между собой поперечными мостиками, отходящими от миозина. Эти мостики наряду с другими веществами содержат фермент АТФ-азу. Область А-дисков, не содержащая нитей актина, обозначается как зона Н. На поперечном разрезе миофибриллы в области краев А-дисков видно, что каждое миозиновое волокно окружено шестью актиновыми нитями.

Структурно-функциональной сократительной единицей миофибриллы является саркомер - повторяющийся участок фибриллы, ограниченный двумя полосками Х. Он состоит из половины изотропного, целого анизотропного и половины другого изотропного дисков. Величина саркомера в мышцах теплокровных составляет около 2 мкм. На электронном микрофото саркомеры проявляются отчетливо.

Гладкая эндоплазматическая сеть мышечных волокон, или саркоплазма тический ретикулум, образует единую систему трубочек и цистерн. Отдельные трубочки идут в продольном направлении, образуя в зонах Н мио фибрилл анастомозы, а затем переходят в полости (цистерны), опоясы вающие миофибриллы по кругу. Пара соседних цистерн почти соприкасается с поперечными трубочками (Т-каналами), идущими от сарколеммы поперек всего мышечного волокна. Комплекс из поперечн.ого Т-канала и двух цистерн, симметрично расположенных по его бокам, называется триадой. У амфибий триады располагаются на уровне Х-полосок, у млекопитающих - на границе А-дисков. Элементы саркоплазматического ретикулума участвуют в распространении возбуждения внутрь мышечных волокон, а также в процессах-сокращения и расслабления мышц.

В 1 г поперечнополосатой мышечной ткани содержится около 100 мг сократительных белков, главным образом миозина и актина, образуюших актомиозиновый комплекс. Эти белки нерастворимы в воде, но могут быть экстрагированы растворами солей. К другим сократительным белкам относятся тропомиозин и комплекс тропонина (субъединицы Т, 1, С), содержашиеся в тонких нитях.

В мышце содержатся также миоглобин, гликолитические ферменты и другие растворимые белки, не выполняющие сократительной функции

   3. Белковый состав скелетной мышцы

Белок
    

Молекулярная масса, дальтон, тыс.
    

Содержание белка, %

Миозин
    

460
    

55 - 60

Актин-р
    

46
    

20 - 25

Тропомиозин
    

70
    

4 - 6

Комплекс тропонина (ТпТ, Тп1, Тпс)
    

76
    

4 - 6

Актинин-и Другие белки (миоглобин, ферменты и пр.)
    

180
    

1 - 2

5 - 10

Гладкие мышцы. Основными структурными элементами гладкой мышечной ткани являются миодиты - мышечные клетки веретенообразной и звездчатой формы длиной 60 - 200 мкм и диаметром 4 - 8 мкм.Наибольшая длина клеток (до 500 мкм) ыаблюдается в матке во время беременности.

Ядро находится в середине клеток. Форма его эллипсоидная, при сокращении клетки оно скручивается штопорообразно, Вокруг ядра сконцентрированы митохондрии и другие трофические компоненты.

Миофибриллы в саркоплазме гладкомышечных клеток, по-видимому, отсутствуют. Имеются лишь продольно ориентированные, нерегулярно распределенные миозиновые и актиновые протофибриллы длиной 1 - 2 мкм.

Поэтому поперечной исчерченности волокон не наблюдается. В протоплазме клеток находятся в большом количестве пузырьки, содержащие Са++, которые, вероятно, соответствуют саркоплазматическому ретикулуму поперечнополосатых мыщц.

В стенках большинства полых органов клетки гладких мышц соединены особыми межклеточными контактами (десмосомами) и образуют плотные пучки, сцементированные гликопротеиновым межклеточным веществом, коллагеновыми и эластичными волокнами.

Такие образования, в которых клетки тесно соприкасаются, но цитоплазматическая и мембранная непрерывность между ними отсутствует (пространство между мембранами в области контактов составляет 20 - 30 нм), называют "функциональным синцитием".

Клетки, образующие синцитий, называют унитарными; возбуждение может беспрепятственно распространяться с одной такой клетки на другую, хотя нервные двигательные окончания вегетативной нервноЙ системы раслоложены лишь на отдельных из них. В мышечных слоях некоторых крупных сосудов, в мышцах, поднимающих волосы, в ресничной мышде глаза находятся мультиунитарные клетки, снабженные отдельными нервными волокнами и функционирующие независимо одна от другой.

МЕХАНИЗМ МЫШЕЧНОГО СОКРАЩЕНИЯ

В обычных условиях скелетные мышцы возбуждаются импульсами, которые поступают по волокнам двигательных нейро нов (мотонейронов), находящихся в передних рогах спинного мозга или в ядрах черепномозговых нервов.

В зависимости от количества концевых разветнлений нервное волокно образует синаптические контакты с болыыим или меньшим числом мышечных волокон.

Мотонейрон, его длинный отросток (аксон) и группа мышечных волокон, иннервируемых зтим аксоном, составляют двигательную, или нейромоторную, единицу.

Чем более тонка, специализированна в работе мышца, тем меньшее количество мышечных волокон входит в нейромоторную единицу. Малые двигвтельные единицы включают лишь 3 - 5 волокон (например, в мышцах глазного яблока, мелких мышцах лицевой части головы), большие двигательные единицы - до волонно (аксон) нескольких тысяч волокон (в крупных мышцах туловища и конечностей). В большинстве мышц двигательные единицы соответствуют первичным мышечным пучкам, каждый из которых содержит от 20 до 60 мышечных волокон. Двигательные единицы различаются не только числом волокон, но и размером нейронов - большие двигательные единицы включают более крупный нейрон с относительно более толстым аксоном.

Нейромоторная единица работает как единое делое: импульсы, исходящие от мотонейрона, приводят в действие мышечные волокна.

Сокращению мышечных волокон предшествует их злектрическое возбуждение, вызываемое разрядом мотонейронов в области концевых пластинок.

Возникающий под влиянием медиатора потенциал концевой пластинки (ПКГ1), достигнув порогового уровня (сколо - 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны вдоль мышечного волокиа.

Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около - 90 мВ) потенциала покоя нервных волокон ( - 70 мВ). Следовательно, для возникновения потенциала действия в мы шечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.

Длительность потенциала действия в мышечном волокне составляет 5 мс (в нервном соответственно 0,5 - 2 мс), скорость проведения возбуждения до 5 м/с (в миелинизированных нервных волокнах - до 120 м/с).

Молекулярные механизмы сокращения. Сокращение - это изменение механического состояния миофибриллярного аппарата мышечных волокон под влиянием нервных ампульсов. Внешне сокращение проявляется в изме нении длины мышцы или степени ее напряжения, или одновременно того и другого.

Согласно лринятой "теории скольжения" в основе сокращения лежит взаимодействие между актиновыми и миозиновымй нитями миофибрилл вследствие образования поперечных мостиков между ними. В результате происходит "втягивание" тонких актиновых миофиламентов между миози-

новыми.

Во время скольжения сами актиновые и миозиновые нити не укора чиваются; длина А-дисков также остается прежней, в то время как 3-диски и Н-зоны становятся более узкими. Не меняется длина нитей и при растя жении мышцы, уменьшается ли~иь степень их взаимного перекрывания.

Эти движения основаны на обратимом изменении конформации концевых частей молекул миозина (поперечных выступов с головками), при котором связк между толстым филаментом миозина и тонким филаментом актина образуются, исчезают и возникают вновь.

До раздражения или в фазе расслабления мономер актина недоступен для взаимодействия, так как этому мешает комплекс тропонина и определенная конформация (подтягивание к оси филамента) концевых фрагментов молекулы миозина.

В основе молекулярного механизма сокращения лежит процесс так называемого электромеханического сопряжения, причем ключевую роль в процессе взаимодействия миозиновых и актиновых миофиламентов играют ионы Са++, содержащиеся в саркоплазматическом ретикулуме. Это подтверждается тем, что в эксперименте при инъекции кальция внутрь волокон возникает их сокращение.

Возникший потенциал распространяется не только по поверхностной мембране мышечного волокна, но и по мембранам, выстилаюшим поперечные трубочки (Т-систему волокна). Волна деполяризации захватывает расположенные рядом мембраны цистерн саркоплазматического ретикулума, что сопровождается активацией кальциевых каналов в мембране и выходом ионов Са++ в межфибриллярное пространство.

Влияние ионов Са+ + на взаимодействие актина и миозина опосредствовано тропомиозином и тропониновым комплексом которые локализованы в тонких нитях и составляют до 1/3 их массы. При связывании ионов Са++ с тропонином (сферические молекулы которого "сидят" на цепях актина) последний деформируется, толкая тропомиозин в желобки между двумя цепями актина. При этом становится возможным взаимодействие актина с головками миозина, и возникает сила сокращения. Одновременцо нроисходит гидролиз АТФ.

Поскольку однократный поворот "головок" укорачивает саркомер лишь на 1/100 его длины (а при изотоническом сокращении саркомер мышцы может укорачиваться на 50 % длины за десятые доли секунды), ясно, что поперечные мостики должны совершать примерно 50 "гребковых" движений за тот же промежуток времени. Совокупное укорочение последовательно расположенных саркомеров миофибрилл приводит к заметному сокращению мышцы.

При одиночном сокращении процесс укорочения вскоре закэнчивается. Кальциевый насос, приводимый в действие энергией АТФ, снижает концентрацию Са++ в цитоплазме мышц до 10 М и повышает ее в сарколлазматическом ретикулуме до 10 М, где Са++ связывается белком кальсек вестрином.

Снижение уровня Са++ в саркоплазме подавляет АТФ-азную актив ность актомиозина; при этом поперечные мостики миозина отсоединяются от актина. Происходит расслабление, удлинение мышцы, которое является пассивным процессом.

Б случае, если стимулы поступают с высокой частотой {20 Гц и более), уровень Са++ в саркоплазме в период между стймулами остается высоким, так как кальциевый насос не успевает "загнать" все ионы Са++ в систему саркоплазматического ретикулума. Это является причиной устойчивого тетанического сокращения мышц.

Таким образом, сокрашение и расслабление мышцы представляет собой серию процессов, развертывающихся в следующей последовательности: стимул -> возникновение потенциала действия - >электромеханическое со пряжение (проведение возбуждения по Т-трубкам, высвобождение Са++ и воздействие его на систему тропонин - тропомиозин - актин) - > образование поперечных мостиков и "скольжение" актиновых нитей вдоль миози новых - > сокращение миофибрилл - > снижение концентрации ионов Са++ вследствие работы кальциевого насоса - > пространственное изменение белков сократительной системы - > расслабление миофибрилл.

После смерти мышды остаются напряженными, наступает так называемое трупное окоченение. При этом поперечные связи между филаментами актина и миозина сохраняются и не могут разорваться по причине снижения уровня АТФ и невозможности активного транспорта Са++ в саркоплазматический ретикулум.

СТРУКТУРА И ФУНКЦИИ НЕЙРОНА

Материалом для построения ЦНС и ее проводников является нервная ткань, состоящая из двух компонентов - нервных клеток (нейронов) и нейроглии. Основными функциональными элементами ЦНС являются нейроны: в теле животных их содержится примерно 50 млрд, из которых лишь небольшая часть расположена на периферических участках тела.

Нейроны составляют 10 - 15 % общего числа клеточных элементов в нервной системе. Основную же часть ее занимают клетки нейроглии.

У высших животных в процессе постнатального онтогенеза дифферен цированные нейроны не делятся. Нейроны существенно различаются по форме (пирамидные, круглые, звездчатые, овальные), размерами (от 5 до 150 мкм), количеству отростков, однако они имеют и общие свойства.

Любая нервная клетка состоит из тела (сомы, перикариона) и отростков разного типа - дендритов (от лат. дендрон - дерево) и аксона (от лат. аксон - ось). В зависимости от числа отростков различают униполярные (одноотростковые), биполярные (двухотростковые) и мультиполярные (многоотростковые) нейроны. Для ЦНС позвоночных типичны биполярные и особенно мультиполярные нейроны.

Дендритов может быть много, иногда они сильно ветвятся, различной толщины и снабжены выступами - "шипиками", которые сильно увеличивают их поверхность.

Аксон (нейрит) всегда один. Он начинается от сомы аксонным холмиком, покрыт специальной глиальной оболочкой, образует ряд аксональных окои чаний - терминалий. Длина аксона может достигать более метра. Аксонный холмик и часть аксона, не покрытая миелиновой оболочкой, составляют начальный сегмент аксона; его диаметр невелик,(1 - 5 мкм).

В ганглиях спинно- и черепномозговых нервов распространены так называемые псевдоуниполярные клетки; их дендрит и аксон отходят от клетки в виде одного отростка, который затем Т-образно делится.

Отличительными особенностями нервных клеток являются крупное ядро (до 1/3 площади цитоплазмы), многочисленные митохондрии, сильно развитый сетчатый аппарат, наличие характерных органоидов - тигроидной субстанции и нейрофибрилл. Тигроидная субстанция имеет вид базофильных глыбок и представляет собой гранулярную цитоплазматическую сеть с множеством рибосом. Функция тигроида связана с синтезом клеточных белков. При длительном раздражении клетки или перерезке аксонов это вещество исчезает. Нейрофибриллы - это нитчатые, четко выраженные структуры, находящиеся в теле, дендритах и аксоне нейрона. Образованы еще более тонкими элементами - нейрофиламентами при их агрегации с нейротрубочками. Выполняют, по-видимому, опорную функцию. В цитоплазме аксона отсутствуют рибосомы, однако имеются митохондрии, эндоплазматический ретикулум и хорошо развитый аппарат нейрофиламентов и нейротрубочек. Установлено, что аксоны представляют собой очень сложные транспортные системы, причем за отдельные виды транспорта (белков, метаболитов, медиаторов) отвечают, по-видимому, разные субклеточные структуры. В некоторых отделах мозга имеются нейроны, которые вырабатывают гранулы секрета мукопротеидной или гликопротеидной природы. Они обладают одновременно физиологическими признаками нейронов и железистых клеток. Эти клетки называются нейросекреторными.

Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и передаче нервных импульсов к другим клеткам - нервным, мышечным или секреторным. Соответственно имеет место специализация нейронов. Их подразделяют на 3 группы:

чувствительные (сенсорные, афферентные) нейроны, воспринимающие сигналы из внешней или внутренней среды;

ассоциативные (промежуточные,вставочные) нейроны,связывающие разные нервные клетки друг с другом;

двигательные (эффекторные) нейроны, передающие нисходящие влияния от вышерасположенных отделов ЦНС к нижерасположенным или из ЦНС к рабочим органам.

Тела сенсорных нейронов располагаются вне ЦНС:в спинномозговых ганглиях и соответствующих им ганглиях головного мозга. Эти нейроны имеют псевдоуниполярную форму с аксоном и аксоноподобным дендритом.

К афферентным нейронам относятся также клетки, аксоны которых составляют восходящие пути спинного и головного мозга.

Ассоциативные нейроны - наиболее многочисленная группа нейронов. Они имеют более мелкий размер, звездчатую форму и аксоны с многочисленными разветвлениями; расположены в сером веществе мозга. Осуществляют связь между разными нейронами, например чувствительным и двигательным в пределах одного сегмента мозга или между соседними сегментами; их отростки не выходят за пределы ЦНС.

Двигательные нейроны также расположены в ЦНС. Их аксоны участвуют в передаче нисходящих влияний от вышерасположенных участков мозга к нижерасположенным или из ЦНС к рабочим органам (например, мотонейроны в передних рогах спинного мозга). Имеются эффекторные нейроны и в вегетативной нервной системе. Особенностями этих ней ронов являются разветвленная сеть дендритов и один длинный аксон. Воспринимающей частью нейрона служат в основном ветвящиеся дендриты, снабженные рецепторной мембраной. В результате суммации местных процессов возбуждения в наиболее легковозбудимой триегерной зоне аксона возникают нервные импульсы (потенциалы действия), которые распространяются по аксону к концевым нервным окончаниям. Таким образом, возбумсдение проходит по нейрону в одном направлении - от дендритов к соме и аксону.

Нейроглия. Основную массу нервной ткани составляют глиальные элементы, выполняющие вспомогательные функции и заполняющие почти все пространство между нейронами. Анатомически среди них различают клетки нейроглии в мозге (олигодендроциты и астроциты) и шванновские клетки в периферической нервной системе. Олигодендроциты и шванновские клетки формируют вокруг аксонов миэлиновые обалочки.

Между глиальными клетками и нейронами имеются щели шириной 15 - 20 нм, которые сообщаются друг с другом, образуя интерстициальное пространство, заполненное жидкостью. Через это пространство происходит обмен веществ между нейроном и глиальными клетками, а также снабжение нейронов кислородом и питательными веществами путем диффузии. Глиальные клетки, по-видимому, выполняют лишь опорные и защитные функции в ЦНС, а не являются, как предполагалось, источни ком их питания или хранителями информации.

По свойствам мембраны глиальные клетки отличаются от нейронов: они пассивно реагируют на электрический ток, их мембраны не генери руют распространяющегося импульса. Между клетками нейроглии существуют плотные контакты (участки низкого сопротивления), которые обеспечивают прямую электрическую связь. Мембранный потенциал глиальных клетов выше, чем у нейронов, и зависит главным образом от концентрации ионов К+ в среде. Когда при активной деятельности нейронов во внеклеточном пространстве увеличивается концентрация К+, часть его поглощается деполяризованными глиальными элементами. Эта буферная функция глии обеспечивает относительно постоянную вне клеточную концентрацию К+.

Клетки глии - астроциты - расположены между телами нейронов и стенкой капилляров, их отростки контактируют со стенкой последних. Эти периваскулярные отростки являются элементами гематоэнцефалического барьера.

Клетки микроглии выполняют фагоцитарную функцию, число их резко возрастает при повреждении ткани мозга.



Мышечные ткани



Введение

Мышечными тканями (textus muscularis) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.).

Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Классификация. В основу классификации мышечных тканей положены два принципа - морфофункциональный и гистогенетический. В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы.

Первая подгруппа - поперечнополосатые (исчерченные) мышечные ткани (textus muscularis striatus). В цитоплазме их элементов миозиновые филаменты постоянно полимеризованы, образуют с актиновыми нитями постоянно существующие миофибриллы. Последние организованы в характерные комплексы - с а р к о м е р ы. В соседних миофибриллах структурные субъединицы саркомеров расположены на одинаковом уровне и создают поперечную исчерченность. Исчерченные мышечные ткани сокращаются быстрее, чем гладкие.

Вторая подгруппа - гладкие (неисчерченные) мышечные ткани (textus muscularis nonstriatus). Эти ткани характеризуются тем, что вне сокращения миозиновые филаменты деполимеризованы. В присутствии ионов кальция они полимеризуются и вступают во взаимодействие с филаментами актина. Образующиеся при этом миофибриллы не имеют поперечной исчерченности: при специальных окрасках они представлены равномерно окрашенными по всей длине (гладкими) нитями.

В соответствии с гистогенетическим принципом в зависимости от источников развития (эмбриональных зачатков) мышечные ткани подразделяются на 5 типов: мезенхимные (из десмального зачатка в составе мезенхимы), эпидермальные (из кожной эктодермы и из прехордальной пластинки), нейральные (из нервной трубки), целомические (из миоэпикардиальной пластинки висцерального листка сомита) и соматические (миотомные).

Первые три типа относятся к подгруппе гладких мышечных тканей, четвертый и пятый - к подгруппе поперечнополосатых.

Поперечнополосатые мышечные ткани

Имеется две основные разновидности поперечнополосатых (исчерченных) тканей - скелетная и сердечная.

Скелетная мышечная ткань

Гистогенез. Источником развития элементов скелетной (соматической) поперечнополосатой мышечной ткани (textus muscularis striatus sceletalis) являются клетки миотомов - миобласты . Одни из них дифференцируются на месте и участвуют в образовании так называемых аутохтонных мышц. Другие клетки мигрируют из миотомов в мезенхиму. Они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты - мышечные трубочки (миотубы) . В них происходит дифференцировка специальных органелл - миофибрилл. В это время в миотубах отмечается хорошо развитая гранулярная эндоплазматическая сеть. Миофибриллы сначала располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра, напротив, из центральных отделов смещаются к периферии. Клеточные центры и микротрубочки при этом полностью исчезают. Гранулярная эндоплазматическая сеть редуцируется в значительной степени. Такие дефинитивные структуры называют миосимпластами.

Клетки другой линии остаются самостоятельными и дифференцируются в миосателлитоциты (миосателлиты). Эти клетки располагаются на поверхности миосимпластов.

Строение. Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосателлитоцитов, покрытых общей базальной мембраной.

Длина всего волокна может измеряться сантиметрами при толщине 50 - 100 мкм. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой.

Строение миосимпласта. Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под сарколеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч. У полюсов ядер располагаются органеллы общего значения - аппарат Гольджи и небольшие фрагменты гранулярной эндоплазматической сети. Миофибриллы заполняют основную часть миосимпласта и расположены продольно.

Саркомер - структурная единица миофибриллы. Каждая миофибрилла имеет поперечные темные и светлые диски, имеющие неодинаковое лучепреломление (анизотропные А-диски и изотропные I-диски). Каждая миофибрилла окружена продольно расположенными и анастомозирующими между собой петлями агранулярной эндоплазматической сети - саркоплазматической сети. Соседние саркомеры имеют общую пограничную структуру - Z- линию (рис. 2).

Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет a-актинин. С этой сетью связаны концы актиновых филаментов. От соседних Z-линий актиновые филаменты направляются к центру саркомера, но не доходят до его середины. Филаменты актина объединены с Z-линией и нитями миозина фибриллярными нерастяжимыми молекулами небулина. Посередине темного диска саркомера располагается сеть, построенная из миомезина. Она образует в сечении М-линию. В узлах этой М-линии закреплены концы миозиновых филаментов. Другие их концы направляются в сторону Z-линий и располагаются между филаментами актина, но до самих Z-линий тоже не доходят. Вместе с тем эти концы фиксированы по отношению к Z-линиям растяжимыми гигантскими белковыми молекулами титина.

Молекулы миозина имеют длинный хвост и на одном из его концов две головки. При повышении концентрации ионов кальция в области присоединения головок (шарнирный участок) молекула изменяет свою конфигурацию. При этом (поскольку между миозиновыми филаментами расположены актиновые) головки миозина связываются с актином (при участии вспомогательных белков - тропомиозина и тропонина). Затем головка миозина наклоняется и тянет за собой актиновую молекулу в сторону М-линии. Z-линии сближаются, саркомер укорачивается.

Альфа-актининовые сети Z-линий соседних миофибрилл связаны друг с другом промежуточными филаментами. Они подходят к внутренней поверхности плазмолеммы и закрепляются в кортикальном слое цитоплазмы, так что саркомеры всех миофибрилл располагаются на одном уровне. Это и создает при наблюдении в микроскоп впечатление поперечной исчерченности всего волокна.

Типы мышечных волокон. Разные мышцы (как органы) функционируют в неодинаковых биомеханических условиях. Поэтому и мышечные волокна в составе разных мышц обладают разной силой, скоростью и длительностью сокращения, а также утомляемостью. Ферменты в них обладают разной активностью и представлены в различных изомерных формах. Заметно различие в них содержания дыхательных ферментов - гликолитических и окислительных.

По соотношению миофибрилл, митохондрий и миоглобина различают белые, красные и промежуточные волокна . По функциональным особенностям мышечные волокна подразделяют на быстрые, медленные и промежуточные . Наиболее заметно мышечные волокна различаются особенностями молекулярной организации миозина. Среди различных его изоформ существуют две основных - "быстрая" и "медленная". При постановке гистохимических реакций их различают по АТФазной активности. С этими свойствами коррелирует и активность дыхательных ферментов. Обычно в быстрых волокнах преобладают гликолитические процессы, они более богаты гликогеном, в них меньше миоглобина, поэтому их называют также белыми. В медленных волокнах, напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными.

Если по активности АТФазы мышечные волокна различаются довольно резко, то степень активности дыхательных ферментов варьирует весьма значительно, поэтому наряду с белыми и красными существуют и промежуточные волокна. В мышечной ткани разные волокна часто расположены мозаично.

Сердечная мышечная ткань

Гистогенез и виды клеток. Источники развития сердечной поперечнополосатой мышечной ткани (textus muscularis striatus cardiacus) - симметричные участки висцерального листка спланхнотома в шейной части зародыша - миоэпикардиальные пластинки . Из них дифференцируются также клетки мезотелия эпикарда. В ходе гистогенеза возникает 5 видов кардиомиоцитов - рабочие (сократительные), синусные (пейсмекерные), переходные, проводящие, а также секреторные.

Рабочие (сократительные) кардиомиоциты образуют свои цепочки. Именно они, укорачиваясь, обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Именно они воспринимают управляющие сигналы от нервных волокон, в ответ, на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние - проводящим. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее - другим проводящим кардиомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим. Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают натрийуретический фактор (гормон), участвующий в процессах регуляции мочеобразования и в некоторых других процессах. Все кардиомиоциты покрыты базальной мембраной.

Гладкие мышечные ткани

Различают три группы гладких (неисчерченных) мышечных тканей (textus muscularis nonstriatus) - мезенхимные, эпидермальные и нейральные .

Мышечная ткань мезенхимного происхождения

Гистогенез. Стволовые клетки и клетки-предшественники в гладкой мышечной ткани на этапах эмбрионального развития пока точно не отождествлены. По-видимому, они родственны механоцитам тканей внутренней среды. Вероятно, в мезенхиме они мигрируют к местам закладки органов, будучи уже детерминированными. Дифференцируясь, они синтезируют компоненты матрикса и коллагена базальной мембраны, а также эластина. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.

Строение клеток. Гладкий миоцит - веретеновидная клетка длиной 20 - 500 мкм, шириной 5 - 8 мкм (рис.3).

Ядро палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается. Органеллы общего значения, среди которых много митохондрий, сосредоточены около полюсов ядра (в эндоплазме). Аппарат Гольджи и гранулярная эндоплазматическая сеть развиты слабо, что свидетельствует о малой активности синтетических функций. Рибосомы в большинстве своем расположены свободно.

Мышечная ткань мезенхимного типа в составе органов

Миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимного происхождения представлена главным образом в стенках кровеносных сосудов и многих трубчатых внутренних органов, а также образует отдельные мелкие мышцы (цилиарные).

Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы к конкретным биологически активным веществам. Поэтому и на многие лекарственные препараты их реакция неодинакова. Возможно, разные функциональные свойства тканей связаны и с конкретной молекулярной организацией актиновых филаментов.

Мышечная ткань эпидермального происхождения

Миоэпителиальные клетки развиваются из эпидермального зачатка.

Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с их секреторными клетками. Миоэпителиальные клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки тоже восстанавливаются из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез (рис.4). В теле клетки располагаются ядро и органеллы общего значения, а в отростках - сократительный аппарат, организованный, как и в клетках мышечной ткани мезенхимного типа.

Мышечная ткань нейрального происхождения

Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. Тела этих клеток располагаются в эпителии задней поверхности радужки. Каждая из них имеет отросток, который направляется в толщу радужки и ложится параллельно ее поверхности. В отростке находится сократительный аппарат, организованный так же, как и во всех гладких миоцитах. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы - суживающую и расширяющую зрачок.

 

Сокращение мышц

Теория скольжения нитей

Н.Е. Huxley и A.F. Huxley независимо друг от друга в 1954 г. предложили для объяснения механизма мышечного сокращения теорию скольжения нитей. Согласно данной теории, укорочение саркомера, а, следовательно, и мышечного волокна в момент сокращения происходит благодаря активному скольжению тонких (актиновых) нитей относительно толстых (миозиновых) нитей. Укорочение заканчивается, когда актиновые филаменты глубоко втягиваются по направлению к центру диска, который определяет границы саркомеров. При расслаблении или растяжении мышцы область взаимного перекрывания тонких и толстых филаментов сужается.

Скользящее движение миозиновых и актиновых филаментов друг относительно друга обусловлено силами, генерируемыми при взаимодействии поперечных мостиков с актиновыми филаментами.

Поперечные мостики должны последовательно прикрепиться к актиновому филаменту, развить силу, отойти и вновь прикрепиться в другом месте. Для того чтобы поддерживать активное сокращение, поперечные мостики должны работать асинхронно, т.е. в любой момент времени часть из них прикреплена к актину, тогда как другие отсоединены. После отсоединения поперечный мостик должен вновь прикрепиться к актиновому филаменту, но уже дальше, в сторону Z-пластинок, внося тем самым вклад в активное скольжение вдоль указанного направления.

Один из основных вопросов по поводу функционирования поперечных мостиков относится к преобразованию химической энергии в механическую. Как же все-таки поперечные мостики генерируют силу для скольжения толстых и тонких филаментов друг относительно друга? По этому поводу высказан ряд гипотез. Широкое распространение получила точка зрения, что сила генерируется за счет колебания или вращения миозиновой головки и затем передается на толстую нить через шейку молекулы миозина. Шейка образует мостиковый шарнир, расположенный между головкой миозиновой молекулы и толстым филаментом. В данной гипотезе мостиковый шарнир выступает как соединение между головкой миозина и толстым филаментом, которое передает силу, развиваемую при вращении головки на актиновом филаменте.

Исследования механических свойств сокращающейся мышцы, проведенные Хаксли и Симмонсом, подтвердили такую точку зрения на функцию поперечных мостиков. Авторы показали, что основная часть упругого компонента мышцы, включенная последовательно с сократительным элементом, находится в самих поперечных мостиках, предположительно в мостиковом шарнире. Они высказали мысль, что упругое растяжение шарнира служит важным моментом в процессе запасания механической энергии при вращении головки миозина вокруг актинового филамента. В соответствии с данной гипотезой вращение генерируется несколькими центрами миозиновой головки, которые поочередно взаимодействуют с центрами на актиновом филаменте.

Упругость мостикового шарнира способствует вращению головки без заметных скачкообразных колебаний развиваемой силы. Растянувшись, мостиковый шарнир будет передавать свое усилие толстому филаменту мягко, содействуя активации скольжения филаментов. Один из главных аргументов-это то, что, по данным Хаксли и Симмонса, последовательно соединенный упругий компонент мышечного волокна пропорционален величине взаимного перекрывания тонких и толстых филаментов, а следовательно, пропорционален числу присоединенных поперечных мостиков. Авторы также установили, что внезапно возникающее небольшое укорочение сопровождается очень быстрым возрастанием развиваемого усилия; они объясняют это лишь поворотом головок поперечных мостиков, взаимодействующих с актином, в более стабильное положение.

Роль кальция в процессе сокращения

Данные о роли ионов кальция в сократительной активности мышц накапливались довольно медленно. Кальций активен в саркоплазме при такой низкой (10 -6 М и менее) концентрации, что до открытия кальцийхелатных реагентов, например ЭДТА и ЭГТА, ее невозможно было поддерживать в экспериментальных растворах. Дело в том, что даже в бидистиллированной воде концентрация ионов кальция превышает 10 -6 М. Самые первые доказательства физиологической роли Са 2+ представлены в работах Рингера и Бакстона. Авторы обнаружили, что изолированное сердце лягушки прекращает сокращения при отсутствии кальция в омывающем растворе. Так появились раствор Рингера и другие физиологические солевые растворы.

Камада и Киносита, а затем Хейлбрун и Вертинский проверяли участие Са 2+ в регуляции мышечного сокращения путем введения разных катионов внутрь мышечных волокон. Из всех изученных ионов только кальций вызывал сокращение при концентрациях, соизмеримых с концентрациями Са 2+ обычно наблюдаемыми в живой ткани. Впоследствии было обнаружено, что скелетная мышца не сокращается в ответ на деполяризацию мембраны, если исчерпаны запасы кальция во внутренних депо, а подвергнутые предварительной экстракции препараты волокон скелетной мышцы не сокращаются при добавлении АТФ, если отсутствует Са 2+ .

Количественная зависимость между концентрацией свободного Са 2+ в саркоплазме и силой мышечного сокращения была установлена сравнительно недавно. Для проведения анализа удаляли поверхностную мембрану и оголенные миофибриллы обрабатывали растворами кальция различной концентрации. Сила возрастает от нуля при концентрации кальция около 10 -8 М до максимального значения при концентрации кальция около 5х10 -6 М. Данная зависимость между силой и концентрацией Са 2+ аналогична зависимости между АТФазной активностью (скоростью гидролиза АТФ) гомогенизированных миофибрилл и концентрацией Са 2+ . Такое совпадение характеристик наводило на мысль, что Са 2+ служит кофактором АТФазной активности миозина. Но оказалось, что это не так.

АТФазная активность чистого раствора миозина довольно низкая, но сильно возрастает при добавлении очищенного актина. Это указывает на то, что АТФазный центр миозина активируется при связывании миозина с актином. В интактной мышце активация АТФазного центра миозина осуществляется при присоединении поперечного мостика к активному филаменту. Эксперименты, проведенные в лаборатории Эбаши, показали, что тропонин и тропомиозин, лежащие вдоль актиновой спирали, препятствуют присоединению миозиновых поперечных мостиков к актину. Тропонин - единственный белок в актиновых и миозиновых филаментах поперечнополосатых мышц позвоночных животных, имеющий высокое химическое сродство к Са 2+ . Каждый тропониновый комплекс связывает четыре иона кальция. Тропониновые комплексы расположены вдоль актинового филамента через каждые 40 нм, прикрепляясь одновременно к актиновому филаменту и молекуле тропомиозина. В состоянии покоя положение тропомиозина конформационно препятствует соединению головок миозина с актиновым филаментом. Связывая Са 2+ , тропонин претерпевает конформационные изменения, в результате чего молекула тропомиозина смещается и освобождает дорогу миозиновым поперечным мостикам для прикрепления к актиновым центрам. Следовательно, присоединение Са 2+ к тропонину устраняет постоянно существующее препятствие для взаимодействия поперечных мостиков с актином. Из результатов экспериментов, сделан вывод, что ингибирование присоединения мостиков снимается при концентрации свободного Са 2+ свыше 10 -7 М.

Сказанное выше объясняет роль Са 2+ в регуляции актин-миозинового взаимодействия в скелетных и сердечной мышце позвоночных животных. В большинстве других мышц роль кальция иная. Есть еще по крайней мере два механизма кальцийзависимой регуляции актин-миозинового взаимодействия. В поперечнополосатых мышцах большинства беспозвоночных животных кальций инициирует сокращение, присоединяясь к легким полипептидным цепям миозина в головках поперечных мостиков. В гладких мышцах позвоночных животных и в немышечном актомиозине сокращение контролируется кальцийзависимым фосфорилированием миозиновой головки.

Инактивация поперечных мостиков и расслабление мышцы

В мышце, находящейся в состоянии покоя, внутренняя система ограниченных мембранами компартментов, называемая саркоплазматическим ретикулумом , активно поглощает Са 2+ . Благодаря этому процессу уровень свободных ионов кальция не поднимается выше 10 -7 М. При такой концентрации поперечные мостики неактивны, потому что с тропонином связывается лишь очень небольшое количество кальция. Таким образом, удаление Са 2+ из саркоплазмы в ретикулуме заставляет мышцу расслабляться после сокращения.

Поскольку АТФ поставляет энергию для сокращения, напрашивается вывод, что удаление АТФ тоже вызовет расслабление мышцы. Но оказалось, что этого не происходит.

Мышца становится напряженной и не поддается растяжению при исчерпании всех ее запасов АТФ и фосфагенов. Это состояние известно как трупное окоченение , и обусловлено оно тем, что поперечные мостики не могут отделиться от актиновых филаментов. О том, что для расслабления мышцы нужен Мg 2+ -АТФ, известно со времени проведения первых экспериментов с экстрагированными глицерином препаратами мышц. В присутствии Са 2+ и Мg 2+ -АТФ глицеринизированная мышца сокращается, а при удалении Са 2+ - расслабляется. Расслабление, как и сокращение, происходит только в присутствии Мg 2+ -АТФ. В нормальных условиях, когда мышца обеспечена АТФ, мостики легко отделяются. Затем, если концентрация свободного саркоплазматического Са 2+ становится ниже уровня, необходимого для процесса присоединения поперечных мостиков к актиновым филаментам, мышца расслабляется.

Итак, расслабление мышцы зависит от наличия Мg 2+ -АТФ, необходимого для разрушения актомиозинового комплекса, и от внутриклеточной концентрации кальция, которая должна быть достаточно низкой для предотвращения нового прикрепления мостиков к актиновым филаментам.

Саркоплазматический ретикулум

С чего начинается поступление Са 2+ в СР? Если мембраны СР выделить с помощью фракционирования, они образуют микроскопические везикулы диаметром 1 мкм. Везикулы способны поглощать кальций из окружающей среды. Если к ним добавить щавелевую кислоту, то внутри везикул по мере увеличения в них концентрации Са 2+ будет осаждаться оксалат кальция. Это говорит об активном транспорте кальция мембраной ретикулума. В нефракционированной мышечной ткани осадок оксалата кальция можно обнаружить с помощью электронного микроскопа в терминальных цистернах. Способность СР к накоплению кальция довольно высокая, что обеспечивает поддержание концентрации свободного Са 2+ в саркоплазме расслабленной мышцы ниже 10 -7 М. Этот уровень Са 2+ достаточен для разрушения связи кальция с тропонином и предотвращения сокращения. Способность СР поглощать Са 2+ из миоплазмы зависит от активности молекул кальциевого насоса. На электронных микрофотографиях, полученных методом замораживания-скалывания, молекулы насоса плотно прижаты ("плечом к плечу") в мембранах, формирующих продольные элементы СР. Как и в других активных транспортных системах, в качестве источника энергии кальциевый насос СР использует АТФ.

 

Высвобождение кальция саркоплазматическим ретикулумом

Как только стало известно, что в СР накапливаются ионы кальция, исследователи начали склоняться к мысли о том, что мышечное сокращение инициируется Са 2+ , высвобождаемым в саркоплазму из внутренней среды цистерн СР.

Сокращение активируется кальцием, высвобожденным из СР, а поверхностный электрический сигнал, т.е. ПД, поступает в глубокие области мышечного волокна с помощью Т-трубочек. Более того, Т-трубочки образуют тесные контакты с концевыми цистернами саркоплазматического ретикулума. Но как электрический сигнал из Т-трубочек передается в СР, давая команду к высвобождению Са 2+ в ответ на деполяризацию Т-трубочки, долгое время оставалось загадкой. Сейчас, кажется, на этот важный вопрос можно ответить. Очевидно, что при деполяризации Т-трубочек сигнал доставляется к концевым цистернам СР посредством внутриклеточных молекул-посредников. Недавние исследования, проведенные в Калифорнийском университете, показали, что высвобождение Са 2+ из СР и последующее сокращение одиночного поперечного волокна могут индуцироваться инозитол-1,4,5- трифосфатом (ИФ 3 ). Это внутриклеточная молекула-посредник, образующаяся при разложении связанного с мембраной фосфатидилинозитола, которая, как известно, стимулирует высвобождение Са 2+ из внутриклеточных хранилищ в некоторых тканях. В отношении мышц есть сведения, что вещества, блокирующие образование ИФ 3 , нарушают сопряжение процессов сокращения волокна и деполяризации мембран. Показано, что такими вещества мешают нормальному высвобождению Са 2+ из СР в ответ на электрическое возбуждение мышцы. И наконец, вещества, блокирующие ферментативное разложение ИФ 3 , напротив, усиливают эффективность ИФ 3 , в инициации сокращения мышечного волокна. Такого рода данные послужили поводом для возникновения гипотезы, утверждающей, что деполяризация Т-трубочек вызывает образование ИФ 3 , а уже затем ИФ 3 , действует как внутриклеточный посредник, индуцирующий высвобождение Са 2+ из СР (рис.5).

Согласно этой гипотезе, начальная стадия сопряжения процесса "возбуждение - сокращение" сопровождается распространением возбуждения по поверхности системы Т-трубочек и представляет собой активацию чувствительных к электрическому напряжению ферментов, расположенных на мембране данных трубочек рядом с концевыми цистернами СР. Эти гипотетические ферменты, по-видимому, столь же чувствительны к изменению электрического поля мембраны, как натриевый канал, и реагируют на это изменение конформационным сдвигом. Вызванный деполяризацией мембраны конформационный сдвиг переводит фермент из неактивной формы в активную. И уже этот активный фермент прямо или косвенно определяет образование ИФ 3 . Затем ИФ 3 диффундирует на короткое расстояние и достигает мембраны концевой цистерны СР, где, связавшись с рецептором, заставляет открываться кальциевые каналы. Ионы кальция, скопившиеся в относительно высокой концентрации в просвете СР, продолжают выходить наружу до тех пор, пока не произойдет ферментативное разрушение ИФ 3 и каналы не закроются. Потом с помощью активного транспорта высвобожденные из СР ионы кальция возвращаются на прежнее место.

Краткое описание процессов сокращения и расслабления

Процессы, контролирующие сокращение скелетной мышцы, изображены в общем виде на рис.6. Приведем их перечень.

1. Поверхностная мембрана мышечного волокна деполяризуется под влиянием потенциала действия или (в некоторых мышцах) под влиянием синаптических потенциалов.

2. Потенциал действия поступает в глубь мышечного волокна по Т-трубочкам.

3. В ответ на деполяризацию Т-трубочек сигнал, который, вероятно, опосредуется молекулами ИФ3, распространяется от этих трубочек к концевым цистернам саркоплазматического ретикулума.

4. Этот химический посредник вызывает открытие кальциевых каналов в СР и высвобождение секвестированных там ионов кальция.

5. Концентрация свободного Са 2+ в миоплазме возрастает от значения 10 -7 М и ниже (в покое) до приблизительно 10 -6 М и более (в активном состоянии). Кальций соединяется с тропонином, вызывая в молекуле этого белка конформационные изменения.

6. Конформационные изменения молекулы тропомиозина устраняют пространственное препятствие для присоединения поперечных мостиков к актиновым филаментам.

7. Миозиновые поперечные мостики прикрепляются к актиновым филаментам и вступают в последовательное взаимодействие с их центрами, что вызывает вращение миозиновой головки относительно актиновых филаментов и натяжение мостикового шарнира.

8. Натяжение мостикового шарнира приводит к активному вхождению актиновых филаментов в А-диск. Саркомер слегка укорачивается.

9. Прежде чем произойдет следующий цикл движения миозинового поперечного мостика, АТФ (связанная с АТФазным центром на миозиновой головке) гидролизуется и освобожденная при этом энергия запасается в виде конформационного изменения в молекуле миозина. Миозиновая головка отходит и затем вновь готова присоединиться к следующему центру, расположенному по длине актинового филамента, и повторить цикл, описанный в пп. 7 и 8. Во время одиночного сокращения каждый поперечный мостик по мере своего продвижения к Z-пластинке вдоль актинового филамента прикрепляется, подтягивается и отсоединяется множество раз.

10. Наконец, в результате активной работы СР уровень Са 2+ в саркоплазме снова понижается, и тропомиозин начинает препятствовать присоединению поперечных мостиков. Мышца остается расслабленной до тех пор, пока не произойдет следующая деполяризации мембраны.

Между структурой саркотубулярной системы и функцией мышцы существует интересная связь. Те мышцы, которые сокращаются и расслабляются очень быстро, имеют высокоразвитый СР и обширную сеть Т-трубочек. А те мышцы, сокращение и расслабление которых происходит медленно, соответственно имеют менее развитый СР. Различные скорости сокращения и расслабления, по-видимому, коррелируют с эффективностью СР в регуляции изменений концентрации кальция, которые в свою очередь запускают и останавливают сократительный механизм.

 

Заключение

Как уже было отмечено, мышечные ткани - это группа тканей организма различного происхождения, объединяемых по признаку сократимости: поперечнополосатая (скелетная и сердечная), гладкая, а также специализированные сократимые ткани - эпителиально-мышечная и нейроглиальная, входящая в состав радужки глаза.

Поперечнополосатая скелетная мышечная ткань возникает из миотомов, входящих в состав элементов сегментированной мезодермы - сомитов.

Гладкая мышечная ткань человека и позвоночных животных развивается в составе производных мезенхимы, так же как и ткани внутренней среды. Однако для всех мышечных тканей характерно сходное обособление в составе эмбрионального зачатка в виде клеток веретенообразной формы - мышцеобразовательных клеток, или миобластов.

Сокращение мышечного волокна заключается в укорочении миофибрилл в пределах каждого саркомера. Толстые (миозиновые) и тонкие (актиновые) нити, в расслабленном состоянии связанные только концевыми отделами, в момент сокращения осуществляют скользящие движения навстречу друг другу. Выделение необходимой для сокращения энергии происходит в результате превращения АТФ в АДФ под влиянием миозина. Ферментная активность миозина проявляется при условии оптимального содержания Са 2+ , которые накапливаются в саркоплазматической сети.

 

Список литературы

Гистология. Под редакцией Ю.И. Афанасьевой, Н.А. Юриной. М.: "Медицина", 1999 г.

Р. Эккерт, Д. Рендел, Дж. Огастин "Физиология животных" - 1 т. М.: "Мир", 1981 г.

К.П. Рябов "Гистология с основами эмбриологии" Минск: "Высшая школа", 1990 г.

Гистология. Под редакцией Улумбекова, проф. Ю.А. Челышева. М.: 1998 г.

Гистология. Под редакцией В.Г. Елисеева. М.: "Медицина", 1983 г.




Система мышц человека Анатомия, строение и функции

Функции мышечной ткани

Основные мышечные группы — это:

  • мышцы спины;
  • мышцы груди;
  • мышцы плеч;
  • мышцы рук;
  • мышцы живота;
  • мышцы ног.

Сходные по строению и функциям клетки в комплексе с межклеточным веществом образуют ткани, каждая из которых выполняет ряд определённых задач. В зависимости от этого в анатомии тела человека выделяют 4 группы тканей:

  • Эпителиальная ткань отличается плотной структурой и малым количеством межклеточного вещества. Такое строение позволяет ей отлично справляться с защитой организма от внешнего воздействия и всасыванием полезных веществ извне. Впрочем, эпителий присутствует не только во внешней оболочке организма, но и во внутренних органах, например, железах. Они быстро восстанавливаются практически без постороннего вмешательства, а потому считаются наиболее универсальными и прочными.
  • Соединительные ткани могут быть очень разнообразны. Они отличаются большим процентом межклеточного вещества, которое может быть любой структуры и плотности. В зависимости от этого варьируют и функции, возложенные на соединительные ткани, — они могут служить опорой, защитой и транспортом питательных веществ для остальных тканей и клеток организма.
  • Особенностью мышечной ткани является умение изменять свои размеры, то есть сокращаться и расслабляться. Благодаря этому она отлично справляется с координацией тела — перемещением как отдельных частей, так и целого организма в пространстве.
  • Нервная ткань — самая сложная и функциональная. Её клетки управляют большинством процессов, протекающих внутри других органов и систем, однако при этом не могут существовать самостоятельно. Всю нервную ткань условно можно разделить на 2 вида: нейроны и глии. Первые обеспечивают передачу импульсов по всему организму, а вторые оберегают и питают их.

Комплекс тканей, локализованный в определённой части организма, имеющий чёткую форму и выполняющий общую функцию, является самостоятельным органом. Как правило, орган представлен различными типами клеток, однако, какой-то определённый вид ткани всегда преобладает, а остальные носят, скорее, вспомогательный характер.

В анатомии человека органы принято условно классифицировать на наружные и внутренние. Наружное, или внешнее, строение человеческого тела можно увидеть и изучить без каких-либо специальных приборов или манипуляций, поскольку все части видны невооружённым глазом. К ним относятся голова, шея, спина, грудь, туловище, верхние и нижние конечности.

В свою очередь, анатомия внутренних органов более сложна, поскольку для её изучения требуется инвазивное вмешательство, современные научно-медицинские приспособления или как минимум наглядный дидактический материал. Внутреннее строение представлено органами, находящимися внутри тела человека, — почками, печенью, желудком, кишечником, головным мозгом и т. д.

Несмотря на то, что каждый орган выполняет какую-то определённую функцию, существовать по-отдельности они не могут — для нормальной жизнедеятельности необходима комплексная работа, поддерживающая функциональность целого организма. Именно поэтому анатомия органов не является самой высокой ступенью изучения тела человека — гораздо удобнее рассматривать устройство организма с системной точки зрения. Взаимодействуя друг с другом, каждая система обеспечивает работоспособность организма в целом.

В анатомии принято выделять 12 систем организма:

  • опорно-двигательный аппарат,
  • покровная система,
  • кроветворение,
  • сердечно-сосудистый комплекс,
  • пищеварение,
  • нервная система,
  • лимфатическая система,
  • иммунная,
  • органы чувств,
  • мочеполовой комплекс,
  • эндокринная система,
  • дыхание.

Чтобы детально изучить строение человека, рассмотрим каждую из систем органов более подробно. Краткий экскурс в основу анатомии человеческого тела поможет сориентироваться в том, от чего зависит полноценная работа организма в целом, как взаимодействуют ткани, органы и системы и каким образом сохранить здоровье.

Опорно-двигательный аппарат представляет собой каркас, который позволяет человеку свободно перемещаться в пространстве и поддерживает объёмную форму тела. Система включает скелет и мышечные волокна, которые тесно взаимодействуют друг с другом. Скелет определяет размеры и форму человека и формирует определённые полости, в которых помещены внутренние органы.

В зависимости от возраста количество костей в скелетной системе варьирует в пределах выше 200 (у новорождённого 270, у взрослого 205–207), часть из которых выполняют функцию рычагов, а остальные остаются неподвижными, защищая органы от внешних повреждений. Кроме того, костные ткани участвуют в обмене микроэлементов, в частности, фосфора и кальция.

Анатомически скелет состоит из 6 ключевых отделов: пояса верхних и нижних конечностей плюс сами конечности, позвоночный столб и череп. В зависимости от выполняемых функций состав костей включает неорганические и органические вещества в разных пропорциях. Более прочные кости преимущественно состоят из минеральных солей, эластичные — из коллагеновых волокон.

Соединительными элементами между отдельными костями служат суставы — своеобразные амортизаторы, которые позволяют изменять положение частей тела относительно друг друга. Впрочем, соединения между костными структурами могут быть не только подвижными: полуподвижные сочленения обеспечиваются хрящами различной плотности, а полностью неподвижные — костными швами в местах срастания.

Мышечная система приводит в действие весь этот сложный механизм, а также обеспечивает работу всех внутренних органов благодаря контролируемым и своевременным сокращениям. Скелетные мышечные волокна прилегают непосредственно к костям и отвечают за подвижность тела, гладкие служат основой сосудов и внутренних органов, а сердечные регулирует работу сердца, обеспечивая полноценный кровоток, а значит, жизнеспособность человека.

Наружное строение человека представлено кожей или, как её принято называть в биологии, дермой, и слизистыми оболочками. Несмотря на кажущуюся незначительность, эти органы играют важнейшую роль в обеспечении нормальной жизнедеятельности: вкупе со слизистыми кожа является огромной рецепторной площадкой, благодаря которой человек может тактильно ощущать различные формы воздействия, как приятные, так и опасные для здоровья.

Покровная система выполняет не только рецепторную функцию — её ткани способны защищать организм от разрушающего внешнего воздействия, выводить через микропоры токсичные и ядовитые вещества и регулировать колебания температуры тела. Составляя порядка 15 % от общей массы тела, она является важнейшей пограничной оболочкой, регулирующей взаимодействие человеческого тела и окружающей среды.

эритроцитов, лейкоцитов, лимфоцитов и тромбоцитов, которые служат своеобразным зеркалом, отражающим состояние организма. Именно с общего анализа крови начинается диагностика абсолютного большинства заболеваний — функциональность органов кроветворения, а значит, и состав крови чувствительно реагирует на любое изменение внутри организма, начиная с банального инфекционного или простудного заболевания и заканчивая опасными патологиями.

Все выполняемые функции чётко разделены между органами, составляющими кроветворный комплекс:

  • лимфатические узлы гарантируют поставку плазматических клеток,
  • костный мозг формирует стволовые клетки, которые позднее трансформируются в форменные элементы,
  • периферические сосудистые системы служат для транспортировки биологической жидкости к другим органам,
  • селезёнка фильтрует кровь от омертвевших клеток.

Всё это в комплексе является сложным саморегулируемым механизмом, малейший сбой в котором чреват серьёзными патологиями, затрагивающими любую из систем организма.

Пищеварение является сложным многоступенчатым процессом, в ходе которого поступившая в организм пища расщепляется на молекулы, переваривается и транспортируется к тканям и органам. Весь этот процесс начинается в ротовой полости, куда, собственно, и поступают питательные элементы в составе блюд, включённых в суточный рацион. Там крупные куски пищи подвергаются измельчению, после чего перемещаются в глотку и пищевод.

Желудок — полый мышечный орган в брюшной полости, является одним из ключевых звеньев пищеварительной цепочки. Несмотря на то, что переваривание начинается ещё в ротовой полости, основные процессы протекают именно в желудке — здесь часть веществ сразу всасывается в кровоток, а часть подвергается дальнейшему расщеплению под воздействием желудочного сока.

В кишечнике желудочное пищеварение сменяется кишечным. Поступающая из протока желчь нейтрализует действие желудочного сока и эмульгирует жиры, повышая их соприкосновение с ферментами. Далее, на протяжении всей длины кишечника, оставшаяся непереваренной масса расщепляется на молекулы и всасывается в кровоток через кишечную стенку, а всё, что остаётся невостребованным, выводится с каловыми массами.

Помимо основных органов, отвечающих за транспортировку и расщепление нутриентов, к пищеварительной системе относятся:

  • Слюнные железы, язык — отвечают за подготовку пищевого комка к расщеплению.
  • Печень — самая крупная в организме железа, которая регулирует синтез желчи.
  • Поджелудочная железа — орган, необходимый для выработки ферментов и гормонов, принимающих участие в метаболизме.

Классификация мышц

Классификация мышц: по форме, направлению волокон, функциональности и расположению в теле.

Все мышцы разные по форме. Мышца напрямую зависит от расположения мышечных волокон к сухожилию
. Классификация мышц по форме включает в себя:

  • длинные,
  • короткие,
  • широкие мышцы.

Длинные мышцы расположены в зоне рук и ног. Они состоят из трёх составляющих: головки, брюха и хвоста. Чтобы не запутаться, длинные мышцы можно определять по окончанию «цепс» — бицепс, трицепс, квадрицепс. К такому типу мышц можно также отнести и те, которые образуются в результате слияния мышц разного происхождения. Как правило, это многобрюшные мышцы, имеющие несколько брюшков. Примером послужит абдоминальная мышца или прямые и косые мышцы пресса.

Широкие мышцы, как правило, располагаются в области туловища и имеют широкое сухожилие. Наглядным примером широких мышц считаются мышцы спины или груди.

Короткие мышцы отличаются значительно малыми размерами.

Также бывают и другие мышцы – круглые, квадратные, ромбовидные и другие.

Прямые и параллельные мышцы
позволяют в значительной мере укорачиваться при сокращении.

Косые мышцы
уступают в своей способности укорачиваться, но они более многочисленны, и с помощью них можно развивать большое усилие.

Поперечные мышцы
похожи на косые и выполняют практически те же самые действия.

Круговые мышцы
располагаются вокруг отверстий телосложения и своими сокращениями суживают их. По-другому их можно обозвать «сжимателями» либо сфинктерами.

Как мы и написали, классификация мышц по функциональности включает в себя: разгибатели, сгибатели, вращающие снаружи (супинаторы), вращающие внутри (пронаторы), приводящие и отводящие. Например, в сгибании туловища принимает участие несколько мышц одновременно. По отношению к суставам мышцы могут быть односуставными, двухсуставными и многосуставными.

Участок тела или кости, с которым связана мышца, к примеру, межрёберные мышцы располагаются между рёбер, а лобная покрывает лобную кость черепа.

Функции мышечной ткани

Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется.

Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна.

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Местоположение

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Происхождение

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.

Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте.

В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна.

Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 ), которые имеют жизненно важное значение для сокращения мышц.Митохондрии, движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки.

Структура саркомера

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Актин.Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений.

Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Классификация органов иммунитета включает центральную и периферическую группы. К первой относятся костный мозг и тимус. Костный мозг представлен губчатой тканью, которая способна синтезировать клетки крови, в том числе лейкоциты, отвечающие за уничтожение чужеродных микробов. А тимус, или вилочковая железа, является местом для размножения лимфатических клеток.

Периферические органы, отвечающие за иммунитет, более многочисленны. К ним относятся:

  • Лимфатические узлы — место фильтрации и распознавания патологических микроэлементов, проникших в организм.
  • Селезёнка — многофункциональный орган, в котором осуществляется депонирование элементов крови, её фильтрация и производство лимфатических клеток.
  • Участки лимфоидной ткани в органах — место, где «работают» антигены, вступая в реакцию с болезнетворными микроорганизмами и подавляя их.

Благодаря работоспособности иммунитета организм может справляться с вирусными, бактериальными и другими заболеваниями, не обращаясь за помощью к медикаментозной терапии. Крепкий иммунитет позволяет противостоять чужеродным микроорганизмам на начальном этапе, предотвращая тем самым возникновение болезни или как минимум обеспечивая её лёгкое течение.

И у женщин, и у мужчин мочевыделительная группа представлена следующими органами:

  • Почки — парные органы, которые выводят из организма излишек воды и токсичные вещества, а также регулируют объём крови и других биологических жидкостей.
  • Мочевой пузырь — полость, состоящая из мышечных волокон, в которой накапливается моча до момента её выведения.
  • Уретра, или мочеиспускательный канал — путь, по которому моча эвакуируется из пузыря после его наполнения. У мужчин он составляет 22–24 см, а у женщин — всего 8.

Анатомия мышц спины

Анатомия мышц спины захватывает всю заднюю часть поверхности туловища. Это очень большая мышечная группа. Мышцы спины парные и делятся на пару частей: глубокие и поверхностные.

Поверхностные располагаются в два слоя, составляя меньшую часть спинного массива. С точки зрения пропорций (очертания и рельефности спины) самый большой интерес вызывают мышцы первого и второго слоя. Это трапеция, ромбовидная и зубчатая.

Трапециевидная мышца

плоская, широкая мышца занимает частичное положение в задней области шеи и в верхнем отделе спины. Форма данной мышцы схожа с треугольником.

  1. Подъём и опускание лопаток.
  2. Сближение лопаток к позвоночнику.

Натренировать трапециевидную мышцу можно с помощью упражнений на подъёмы и сближения лопаток к позвонку. В особенности подойдут такие, как тяга гантели к подбородку, .

Широчайшая мышца спины

по форме также напоминает треугольник, но только большой. Она расположена в нижнем отделе спины, а на сленге бодименов носит название «крылья». Они придают ей «V» образное очертание и отлично подчеркивают всю фигуру атлета.

Анатомическая функциональность:

  1. Приведение плеча к туловищу.
  2. Тяга мышц верхних конечностей назад (к средней линии) и их пронация (вращение вовнутрь).

Натренировать её можно с помощью разнообразных упражнений, рассчитанных на разведение и сведение лопаток. Это обычные или упражнение в спортзале на специальном тренажёре «тяга вертикального блока».

Ромбовидные мышцы.
Напоминают форму ромбической пластины и залегают под трапецией. Своё начало берут с шейного и грудного позвонка и прикрепляются к лопатке выше уровня кости. Анатомические функции – тяга лопатки к позвоночнику и в то же время её перемещение к верху.

Зубчатые мышцы.
Тонкие и плоские мышцы, немного прикрытые ромбовидной мышцей. Они образуют три слоя: поверхностный, средний и глубокий и составляют основную часть спинного массива. Принимают непосредственное участие в дыхании, поднимая и опуская верхние и нижние рёбра. Большой интерес проявлен к поверхностной части этой мышцы.

Длинная мышца

самая длинная из мышц спины и самая сильная. Она представляет из себя пару «столбов», тянущихся вдоль поясничного отдела позвоночника. В области поясницы делятся на три части:

  • остистая;
  • длиннейшая;
  • позвоночно-рёберная.
  1. Сгибать и разгибать туловище при двустороннем сокращении.
  2. Наклоны в сторону при одностороннем сокращении.

Мышцы поверхностного слоя — самые сильные, они выполняют самую тяжёлую работу и занимают обширные поверхности.

Для развития спины подойдут упражнения разного типа — главное, чтобы нагрузка была упорно связана с отягощением на позвоночник. К примеру, становая тяга или гиперэкстензия.

Анатомия мышц груди

В эту группу входит грудная мышечная группа и все крупные мышцы, которые к ней относятся. В данную группу входит самый большой процент мышц человека.

Анатомия мышц груди:

  1. Мышцы плечевого пояса верхних конечностей (грудные – большая и малая, подключичная и передняя зубчатая).
  2. Собственные мышцы груди.

Большая грудная мышца —
располагается поверхностно и покрывает основную долю передней стенки грудной клетки. Данные мышцы примечательны массивностью, плоскостью и являются парными. По своей форме напоминают веер.

  1. Опускает и приводит к туловищу поднятую руку, в то же время поворачивая её внутрь.
  2. Принимает участие в подтягивании туловища при лазанье.

Малая грудная

с виду как треугольник, расположена под большой грудной мышцей. Начинается от рёбер и прикрепляется к лопатке.

Главная анатомическая функция — тянет лопатку вперёд и вниз, а при фиксации осуществляет подъём ребра.

Подключичная

небольшая продольная мышца, залегающая чуть ниже ключицы, под большой грудной.

Анатомическая функциональность – тянуть ключицу вперёд и вниз, задерживая её в грудном суставе.

Передняя зубчатая мышца
занимает передний и боковой отдел грудной клетки. Начинается 9 зубцами от 9 верхних рёбер и прикрепляется к краю лопатки.

Анатомическая функция:

  1. Оттягивает лопатку от позвоночника.
  2. При фиксации – поднимает рёбра, участвуя в процессе дыхания (вдох).

Межрёберные
мышцы
расположены с края рёбер и принимают участие в процессе дыхания (вдох – выдох).

Диафрагма —
это главная дыхательная мышца, которая представляет собой подвижную перегородку между грудной и брюшной полостью.

Как тренировать эти мышцы:

  1. Основную нагрузку делаем на развитие больших и малых грудных мышц.
  2. Так как строение мышц редкое, чтобы их предельно проработать, нужно выбирать упражнения с физической нагрузкой под разным углом.
  3. Наглядные примеры: жим штанги или , отжимания от пола.

Анатомия мышц плечевого пояса

Дельтовидная мышца

это толстая мышца, по форме напоминающая опять же треугольник, покрывающая сустав плеча и частично мышцы плеча. Её крупные пучки веерообразно сходятся к самой вершине треугольника, направленного вниз. Начинается мышца с оси лопатки, акромиона и латериальной части ключицы, а крепятся к дельтовидной бугристой плечевой кости. Под самой мышцей располагается поддельтовидная сумка.

Анатомия мышц плечевого пояса: функциональность

  1. Передняя дельта – сгибает плечо, поворачивая её вовнутрь, поднимает опущенную руку вверх.
  2. Задняя дельта – разгибает плечо, поворачивая её кнаружи, поднятую руку опускает вниз.
  3. Средняя дельта — отводит руку назад.

К остальным мышцам плечевого пояса относятся – большая, малая, круглая, надостная, подостная, подлопаточная мышцы.

  1. Из перечисленного списка в большей степени подвержены росту дельтовидные мышцы.
  2. Формируя плечи, можно добиться наилучшей V-образной симметрии.
  3. Рекомендуемые упражнения — , жим штанги из разного положения.

Анатомия мышц рук

Анатомия мышц рук включает в себя мышцы плеча и предплечья. Плечи делятся на две группы: заднюю (разгибающую) и переднюю (сгибающую).

Первая группа включает в себя три мышцы:

  1. Клювовидно-плечевая.
  2. Двуглавая мышца.
  3. Плечевая мышца.

Вторая группа мышц:

  1. Трёхглавая мышца плеча.
  2. Локтевая мышца.

Плечевая мышца
— толстая мышца, располагается под бицепсом, выталкивая его наружу. Прикрепляется к локтевому суставу. К главной анатомической функциональности можно отнести сгибание предплечья в локтевом суставе.

Клювовидно-плечевая мышца
– мышца плоского типа, прикрыта короткой головкой бицепса. К главным анатомическим функциям можно отнести подъём рук, сгибание плеч в плечевом суставе и приведение руки к туловищу.

устройство человека

Бицепс
— двуглавая мышца, состоит из двух головок: длинной и короткой. Начинаются с лопаток (в разных местах) и в конечном итоге образуют одно брюшко, напоминающее форму веретена.

  1. Осуществляет сгибание в плечевом суставе.
  2. Сгибает локоть в плечевом суставе.
  3. Повернутое вовнутрь предплечье поворачивает наружу (супинация).
  4. Длинная головка участвует в отведении рук.
  5. Короткая головка принимает участие в приведении руки.

Локтевая мышца
– маленькая пирамидальная мышца, являющаяся продолжением медиальной головки трицепса. Месторасположение — в зоне локтевого отростка. Анатомическая функциональность — участвует в разгибании предплечья в локтевом суставе.

Трицепс
– большая длинная мышца, занимающая практически всю заднюю часть плеча. Трицепс состоит из трёх головок:

  • длинная;
  • латериальная;
  • медиальная.

К основным анатомическим особенностям можно отнести разгибание предплечья в локтевом суставе и сведение передних конечностей к туловищу.

  1. Чтобы как следует проработать руки, необходимо большое внимание уделить таким мышцам, как бицепс, трицепс.
  2. Упражнения для прокачки рук: , отжимания от скамейки.

Анатомия мышц живота

Брюшная полость организма состоит из нескольких групп:

  • абдоминальная (прямая);
  • косая (наружная);
  • внутренняя (косая);
  • поперечная.

Абдоминальная
– парно-плоская мышца живота, залегающая в отделе брюшной стенки по сторонам от средней линии живота. Имеет самую значительную площадь пресса и обладает самой внушительной подъёмной силой. Условно можно выделить верхний, нижний и средний отдел этой мышцы. Они способны сокращаться как вместе, так и отдельно. К анатомической функции можно отнести — скручивание корпуса в отделе поясничного позвоночника.

Наружная косая
— плоская мышца живота, берёт своё начало с боковой поверхности грудной клетки от восьми нижних рёбер восемью зубцами, причём волокна идут сверху вниз и в медиальном направлении.

Анатомия мышц живота: функциональность

  1. Вращение туловища в противоположную сторону.
  2. Оттягивание книзу грудной клетки.
  3. Сгибание позвоночного столба.

Внутренняя косая
— плоская и широкая мышца, располагается от наружной косой мышцы в переднебоковом отделе брюшной стенки. Анатомическая функциональность – схожа с наружной косой.

Поперечная мышца
– плоская и широкая мышца, занимающая самое глубокое положение в переднебоковом отделе брюшной полости.

Главная анатомическая функция — упрощает стенку живота, сближает нижние отделы грудной клетки.

  • Каждое упражнение на прямую мышцу живота задействует его целостно.
  • Нижний отдел пресса развивать намного сложнее, чем верхний;
  • Упражнения: и т.д.

Двигательные единицы мышц

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.Размер двигательных единиц изменяется по всему телу, в зависимости от функции.

Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 высвобождаются и протекают в миофибриллы. Ионы Са2 связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Анатомия мышц ног

Мышцы ног можно разделить на 4 части: ягодицы, передняя и задняя часть бедра, мышцы голени.

Ягодичная мышца
. Одна из самых популярных мышечных групп, интересующих как представителей мужского пола, так и женского. Занимает практически всю часть ягодиц, именно поэтому от неё зависит их форма. Сами по себе мышцы крупные, волокнистые и мощные (достигают толщины 2-3 см). Начинается она от тазовой кости и крепится к задней поверхности бедренной кости тазобедренного сустава.

Основные анатомические особенности:

  • Обеспечение подвижности тазобедренного сустава.
  • Распрямление туловища.
  • Отведение ног назад.
  • Разгибание бедра.

Мышцы передней поверхности бедра
– всю поверхность бедра занимает четырёхглавая мышца бедра. Она включает в своё строение 4 головки. Прямую, внутреннюю широкую (медиальную), наружную широкую (латериальную) и среднюю широкую. Каждая головка имеет своё начало, в конце же в зоне колена они переходят в общее сухожилие, которое крепится к большой берцовой кости.

Прямая мышца – двуперистая, расположена на передней поверхности бедра. Это самая длинная из головок квадрицепса.

Внутренняя широкая
– плоская широкая мышца, немного прикрытая прямой мышцей. Мышечные пучки, окутывая переднемедиальную поверхность бедренной кости, направлены косо вниз и вперёд.

Наружная широкая мышца

плоская и толстая залегает на передненаружной поверхности бедра. Мышечные пучки, направляясь косо вниз и вперёд, покрывают переднелатериальную поверхность бедренной кости.

Средняя широкая мышца
– одна из самых слабых мышц квадрицепса, расположенная под прямой мышцей бедра. Пучки её направлены строго вертикально вниз и переходят в плоское сухожилие.

Главная анатомическая особенность – разгибать голень в колене, сгибать бёдра и наклонять таз вперёд.

Мышца задней поверхности бедра
– двуглавая мышца располагается близко к боковому краю бедра. По своему строению состоит из двух головок:, длинной и короткой. При соединении они образуют мощное брюшко, которое направляясь вниз, переходит в узкое сухожилие.

Анатомия мышц ног: функциональность – сгибать голени в коленном суставе и разгибать туловище.

Мышцы голени
– данные мышцы представлены трёхглавой мышцей. Она состоит из икроножной, которая располагается поверхностно, и камбаловидной мышцы, залегающей под икроножной. Эти две мышцы имею одно общее сухожилие.

Икроножная мышца
– состоит из двух головок, медиальной и латериальной, поверхностные слои которых представлены прочными пучками сухожилий.

Камбаловидная мышца
– плоская протяжённая мышца, которая, направляясь вниз, переходит в сухожилие икроножной мышцы и в нижней третей части го голени образует мощное сухожилие.

Главные анатомические функции — сгибание в коленном суставе, сгибание стопы, поднятие пятки.

  1. Для накачивания ног нужно их отягощать.
  2. В данном случае упражнения на ноги должны выполняться с большим количеством подходов, исполняясь в медленном и равномерном темпе под чутким контролем.
  3. Упражнения: на квадрицепсы – жим ногами в тренажёре; бицепс бедра – становая тяга на прямых ногах и др.

Сердечно-сосудистый комплекс

Система, включающая сердце и все сосуды, начиная с самых крупных и заканчивая микроскопическими капиллярами диаметром в несколько микрон, обеспечивает циркуляцию крови внутри организма, питая, насыщая кислородом, витаминами и микроэлементами и очищая от продуктов распада каждую клеточку человеческого тела.

Эту гигантскую по площади сложнейшую сеть нагляднее всего демонстрирует анатомия человека в картинках и схемах, поскольку теоретически разобраться, как и куда ведёт каждый конкретный сосуд, практически нереально — их количество в организме взрослого достигает 40 млрд и более. Тем не менее, вся эта сеть является сбалансированной замкнутой системой, организованной в 2 круга кровообращения: большой и малый.

В зависимости от объёма и выполняемых функций сосуды можно классифицировать следующим образом:

  1. Артерии — крупные трубчатые полости с плотными стенками, которые состоят из мышечных, коллагеновых и эластиновых волокон. По этим сосудам насыщенная молекулами кислорода кровь разносится от сердца к многочисленным органам, обеспечивая их полноценное питание. Единственным исключением является лёгочная артерия, по которой, в отличие от остальных, кровь движется к сердцу.
  2. Артериолы — более мелкие артерии, способные менять величину просвета. Они служат связующим звеном между объёмными артериями и мелкой капиллярной сетью.
  3. Капилляры — самые маленькие сосудики диаметром не более 11 мкм, сквозь стенки которых из крови в близлежащие ткани просачиваются молекулы питательных веществ.
  4. Анастомозы — артериоло-венулярные сосуды, обеспечивающие переход из артериол в венулу в обход сети капилляров.
  5. Венулы — такие же мелкие, как и капилляры, сосуды, которые обеспечивают отток крови, лишённой кислорода и полезных частиц.
  6. Вены — более крупные по сравнению с венулами сосуды, по которым обеднённая кровь с продуктами распада движется к сердцу.

https://www.youtube.com/watch?v=https:iMkOHzn2Gog

«Двигателем» столь крупной замкнутой сети является сердце — полый мышечный орган, благодаря ритмичным сокращениям которого кровь продвигается по сосудистой сетке. При нормальной работе каждую минуту сердце перекачивает не менее 6 литров крови, а за день — примерно 8 тысяч литров. Неудивительно, что сердечные заболевания являются одними из самых серьёзных и распространённых, — с возрастом этот биологический насос изнашивается, поэтому необходимо тщательно отслеживать любые изменения в его работе.




В содержание







 |  Анимация, картинки  |  Астрология, гороскопы  |  Аудиокниги  |  Вебкамеры России  |  Вебкамера на МКС  |  Выживание  |  Гороскопы  |  Заговоры  |  Иллюзии  |  Игры  |  Очищение  |  Календарь  |  Конвертер валют Мира  |  Лунный календарь  |  Мировая пресса  |  Мировая статистика  |  Население Земли  |  Народная медицина  |  Нетрадиционная медицина  |  Новости в России и Мире  |  Онлайн полеты самолётов  |  Омоложение  |  Очищение  |  Погода в России и Мире.  |  Поздравления  |  Прогнозы по дате рождения.  |  Сейсмический монитор  |  Сонник.  |  Страны Мира.  |  Телевидение  |  100 лучших фильмов  |  Улыбнись  |  Фильмотека  |  Ретро музыка  |  Ретро фильмы  |  Радио онлайн  |  Мини TV  |  Лунный день  |  Вечный календарь  |